scispace - formally typeset
Search or ask a question
Author

Alberto Carpinteri

Bio: Alberto Carpinteri is an academic researcher from Polytechnic University of Turin. The author has contributed to research in topics: Fracture mechanics & Acoustic emission. The author has an hindex of 67, co-authored 817 publications receiving 19193 citations. Previous affiliations of Alberto Carpinteri include Technical University of Madrid & University of Bologna.


Papers
More filters
BookDOI
01 Jan 1997
TL;DR: Panagiotopoulos, O.K.Carpinteri, B. Chiaia, R. Gorenflo, F. Mainardi, and R. Lenormand as mentioned in this paper.
Abstract: A. Carpinteri: Self-Similarity and Fractality in Microcrack Coalescence and Solid Rupture.- B. Chiaia: Experimental Determination of the Fractal Dimension of Microcrack Patterns and Fracture Surfaces.- P.D. Panagiotopoulos, O.K. Panagouli: Fractal Geometry in Contact Mechanics and Numerical Applications.- R. Lenormand: Fractals and Porous Media: from Pore to Geological Scales.- R. Gorenflo, F. Mainardi: Fractional Calculus: Integral and Differential Equations of Fractional Order.- R. Gorenflo: Fractional Calculus: some Numerical Methods.- F. Mainardi: Fractional Calculus: some Basic Problems in Continuum and Statistical Mechanics.

1,389 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the sum of the dimensional decrement (for material ligament) and the dimensional increment (for fracture surface) must be lower than unity.

422 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of the size effects on tensile strength and fracture energy of brittle and disordered materials (concrete, rocks, ceramics, etc.) is reconsidered under a new and unifying light cast on by fractal geometry.

354 citations

Journal ArticleDOI
TL;DR: In this article, an extension of the celebrated Paris law for crack propagation is given to take into account some of the deviations from the power-law regime in a simple manner using the Wohler SN curve of the material, suggesting a more general ''unified law''.
Abstract: An extension of the celebrated Paris law for crack propagation is given to take into account some of the deviations from the power-law regime in a simple manner using the Wohler SN curve of the material, suggesting a more general ''unified law''. In particular, using recent proposals by the first author, the stress intensity factor K(a) is replaced with a suitable mean over a material/structural parameter length scale Da, the ''fracture quantum''. In practice, for a Griffith crack, this is seen to correspond to increasing the effective crack length of Da, similarly to the Dugdale strip-yield models. However, instead of including explicitly information on cyclic plastic yield, short-crack behavior, crack closure, and all other detailed information needed to eventually explain the SN curve of the material, we include directly the SN curve constants as material property. The idea comes as a natural extension of the recent successful proposals by the first author to the static failure and to the infinite life envelopes. Here, we suggest a dependence of this fracture ''quantum'' on the applied stress range level such that the correct convergence towards the Wohler-like regime is obtained. Hence, the final law includes both Wohler's and Paris' material constants, and can be seen as either a generalized Wohler's SN curve law in the presence of a crack or a generalized Paris' law for cracks of any size. r 2006 Elsevier Ltd. All rights reserved.

290 citations


Cited by
More filters
Journal ArticleDOI
01 May 1983
TL;DR: In this article, a fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed.
Abstract: A fracture theory for a heterogenous aggregate material which exhibits a gradual strain-softening due to microcracking and contains aggregate pieces that are not necessarily small compared to structural dimensions is developed. Only Mode I is considered. The fracture is modeled as a blunt smeard crack band, which is justified by the random nature of the microstructure. Simple triaxial stress-strain relations which model the strain-softening and describe the effect of gradual microcracking in the crack band are derived. It is shown that it is easier to use compliance rather than stiffness matrices and that it suffices to adjust a single diagonal term of the complicance matrix. The limiting case of this matrix for complete (continuous) cracking is shown to be identical to the inverse of the well-known stiffness matrix for a perfectly cracked material. The material fracture properties are characterized by only three parameters—fracture energy, uniaxial strength limit and width of the crack band (fracture process zone), while the strain-softening modulus is a function of these parameters. A method of determining the fracture energy from measured complete stres-strain relations is also given. Triaxial stress effects on fracture can be taken into account. The theory is verified by comparisons with numerous experimental data from the literature. Satisfactory fits of maximum load data as well as resistance curves are achieved and values of the three material parameters involved, namely the fracture energy, the strength, and the width of crack band front, are determined from test data. The optimum value of the latter width is found to be about 3 aggregate sizes, which is also justified as the minimum acceptable for a homogeneous continuum modeling. The method of implementing the theory in a finite element code is also indicated, and rules for achieving objectivity of results with regard to the analyst's choice of element size are given. Finally, a simple formula is derived to predict from the tensile strength and aggregate size the fracture energy, as well as the strain-softening modulus. A statistical analysis of the errors reveals a drastic improvement compared to the linear fracture theory as well as the strength theory. The applicability of fracture mechanics to concrete is thus solidly established.

3,102 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss existence, uniqueness, and structural stability of solutions of nonlinear differential equations of fractional order, and investigate the dependence of the solution on the order of the differential equation and on the initial condition.

3,047 citations

Journal ArticleDOI
TL;DR: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes as mentioned in this paper, and a large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker-Planck equation.
Abstract: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes. A large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker–Planck equation (Metzler R and Klafter J 2000a, Phys. Rep. 339 1–77). It therefore appears timely to put these new works in a cohesive perspective. In this review we cover both the theoretical modelling of sub- and superdiffusive processes, placing emphasis on superdiffusion, and the discussion of applications such as the correct formulation of boundary value problems to obtain the first passage time density function. We also discuss extensively the occurrence of anomalous dynamics in various fields ranging from nanoscale over biological to geophysical and environmental systems.

2,119 citations

Journal ArticleDOI
TL;DR: In this article, a numerical method for solving dynamic problems within the peridynamic theory is described, and the properties of the method for modeling brittle dynamic crack growth are discussed, as well as its accuracy and numerical stability.

1,644 citations