scispace - formally typeset
Search or ask a question
Author

Alberto Ciccia

Bio: Alberto Ciccia is an academic researcher from Columbia University. The author has contributed to research in topics: DNA damage & DNA repair. The author has an hindex of 22, co-authored 32 publications receiving 6744 citations. Previous affiliations of Alberto Ciccia include Columbia University Medical Center & Harvard University.

Papers
More filters
Journal ArticleDOI
TL;DR: This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.

3,678 citations

Journal ArticleDOI
TL;DR: The lentiviral pINDUCER series of expression vehicles enable tracking of viral transduction and shRNA or cDNA induction in a broad spectrum of mammalian cell types in vivo and allows isolation of cell populations that exhibit a potent, inducible target knockdown in vitro and in vivo that can be used in human xenotransplantation models to examine cancer drug targets.
Abstract: The discovery of RNAi has revolutionized loss-of-function genetic studies in mammalian systems. However, significant challenges still remain to fully exploit RNAi for mammalian genetics. For instance, genetic screens and in vivo studies could be broadly improved by methods that allow inducible and uniform gene expression control. To achieve this, we built the lentiviral pINDUCER series of expression vehicles for inducible RNAi in vivo. Using a multicistronic design, pINDUCER vehicles enable tracking of viral transduction and shRNA or cDNA induction in a broad spectrum of mammalian cell types in vivo. They achieve this uniform temporal, dose-dependent, and reversible control of gene expression across heterogenous cell populations via fluorescence-based quantification of reverse tet-transactivator expression. This feature allows isolation of cell populations that exhibit a potent, inducible target knockdown in vitro and in vivo that can be used in human xenotransplantation models to examine cancer drug targets.

586 citations

Journal ArticleDOI
TL;DR: The data indicate that the FANCM/FAAP24 complex may play a key role in recruitment of the FA core complex to damaged DNA.

308 citations

Journal ArticleDOI
TL;DR: Proteins belonging to the XPF/MUS81 family play important roles in the repair of DNA lesions caused by UV-light or DNA cross-linking agents and determining how they recognize specific DNA substrates and promote key repair reactions is an important challenge for the future.
Abstract: Proteins belonging to the XPF/MUS81 family play important roles in the repair of DNA lesions caused by UV-light or DNA cross-linking agents. Most eukaryotes have four family members that assemble into two distinct heterodimeric complexes, XPF-ERCC1 and MUS81-EME1. Each complex contains one catalytic and one noncatalytic subunit and exhibits endonuclease activity with a variety of 3'-flap or fork DNA structures. The catalytic subunits share a characteristic core containing an excision repair cross complementation group 4 (ERCC4) nuclease domain and a tandem helix-hairpin-helix (HhH)(2) domain. Diverged domains are present in the noncatalytic subunits and may be required for substrate targeting. Vertebrates possess two additional family members, FANCM and Fanconi anemia-associated protein 24 kDa (FAAP24), which possess inactive nuclease domains. Instead, FANCM contains a functional Superfamily 2 (SF2) helicase domain that is required for DNA translocation. Determining how these enzymes recognize specific DNA substrates and promote key repair reactions is an important challenge for the future.

275 citations

Journal ArticleDOI
TL;DR: It is shown that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation, providing a comprehensive resource for DSB-free gene disruption by iSTOP.

265 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.

3,678 citations

Journal ArticleDOI
23 Nov 2017-Nature
TL;DR: Adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA are described and a transfer RNA adenosine deaminase is evolved to operate on DNA when fused to a catalytically impaired CRISPR–Cas9 mutant.
Abstract: The spontaneous deamination of cytosine is a major source of transitions from C•G to T•A base pairs, which account for half of known pathogenic point mutations in humans. The ability to efficiently convert targeted A•T base pairs to G•C could therefore advance the study and treatment of genetic diseases. The deamination of adenine yields inosine, which is treated as guanine by polymerases, but no enzymes are known to deaminate adenine in DNA. Here we describe adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA. We evolved a transfer RNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9 mutant. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs that convert targeted A•T base pairs efficiently to G•C (approximately 50% efficiency in human cells) with high product purity (typically at least 99.9%) and low rates of indels (typically no more than 0.1%). ABEs introduce point mutations more efficiently and cleanly, and with less off-target genome modification, than a current Cas9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells. Together with previous base editors, ABEs enable the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.

2,451 citations

Journal ArticleDOI
TL;DR: In this paper, the kinase ATR (ATM- and Rad3-related) stabilizes and helps to restart stalled replication forks, avoiding the generation of DNA damage and genome instability.
Abstract: Replication stress is a complex phenomenon that has serious implications for genome stability, cell survival and human disease. Generation of aberrant replication fork structures containing single-stranded DNA activates the replication stress response, primarily mediated by the kinase ATR (ATM- and Rad3-related). Along with its downstream effectors, ATR stabilizes and helps to restart stalled replication forks, avoiding the generation of DNA damage and genome instability. Understanding this response may be key to diagnosing and treating human diseases caused by defective responses to replication stress.

1,492 citations

Journal ArticleDOI
TL;DR: Despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood and the fundamental questions that remain unanswered after 25 years of study are highlighted.
Abstract: The ability to sense and adjust to the environment is crucial to life. For multicellular organisms, the ability to respond to external changes is essential not only for survival but also for normal development and physiology. Although signaling events can directly modify cellular function, typically signaling acts to alter transcriptional responses to generate both transient and sustained changes. Rapid, but transient, changes in gene expression are mediated by inducible transcription factors such as NF-κB. For the past 25 years, NF-κB has served as a paradigm for inducible transcription factors and has provided numerous insights into how signaling events influence gene expression and physiology. Since its discovery as a regulator of expression of the κ light chain gene in B cells, research on NF-κB continues to yield new insights into fundamental cellular processes. Advances in understanding the mechanisms that regulate NF-κB have been accompanied by progress in elucidating the biological significance of this transcription factor in various physiological processes. NF-κB likely plays the most prominent role in the development and function of the immune system and, not surprisingly, when dysregulated, contributes to the pathophysiology of inflammatory disease. As our appreciation of the fundamental role of inflammation in disease pathogenesis has increased, so too has the importance of NF-κB as a key regulatory molecule gained progressively greater significance. However, despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood. In this review, we highlight both the progress that has been made and the fundamental questions that remain unanswered after 25 years of study.

1,481 citations