scispace - formally typeset
Search or ask a question
Author

Alberto D'Angelo

Other affiliations: University of Trieste
Bio: Alberto D'Angelo is an academic researcher from University of Bath. The author has contributed to research in topics: Medicine & Cancer. The author has an hindex of 10, co-authored 36 publications receiving 313 citations. Previous affiliations of Alberto D'Angelo include University of Trieste.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
06 Apr 2019-Cells
TL;DR: The molecular background and clinical efficacy of CDK4/6 inhibitors as single agents or in combination with other targeted therapies for the treatment of BC are summarized.
Abstract: Breast Cancer (BC) is the second most common type of cancer worldwide and displays the highest cancer-related mortality among women worldwide. Targeted therapies have revolutionized the way BC has been treated in recent decades, improving the life expectancies of millions of women. Among the different molecular pathways that have been of interest for the development of targeted therapies are the Cyclin-Dependent Kinases (CDK). CDK inhibitors are a class of molecules that already exist in nature and those belonging to the Cyclin dependent kinase inhibitors family INK4 that specifically inhibit CDK4/6 proteins. CDK4/6 inhibitors specifically block the transition from the G1 to the S phase of the cell cycle by dephosphorylation of the retinoblastoma tumor suppressor protein. In the past four years, the CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, received their first FDA approval for the treatment of Hormone Receptor (HR)-positive and Human Epidermal growth factor Receptor 2 (HER2)-negative breast cancer after showing significant improvements in progression-free survival in the PALOMA-1, MONALEESA-2 and the MONARCH-2 randomized clinical trials, respectively. After the encouraging results from these clinical trials, CDK4/6 inhibitors have also been investigated in other BC subtypes. In HER2-positive BC, a combination of CDK4/6 inhibitors with HER2-targeted therapies showed promise in preclinical studies and their clinical evaluation is ongoing. Moreover, in triple-negative BC, the efficacy of CDK4/6 inhibitors has been investigated in combination with other targeted therapies or immunotherapies. This review summarizes the molecular background and clinical efficacy of CDK4/6 inhibitors as single agents or in combination with other targeted therapies for the treatment of BC. Future directions for ongoing clinical trials and predictive biomarkers will be further debated.

96 citations

Journal ArticleDOI
TL;DR: The aim of this review is to describe MSI and EBV positive gastric cancer’s subgroups and their relationship with novel immunotherapy.
Abstract: Gastric cancers have been historically classified based on histomorphologic features. The Cancer Genome Atlas network reported the comprehensive identification of genetic alterations associated with gastric cancer, identifying four distinct subtypes— Epstein-Barr virus (EBV)-positive, microsatellite-unstable/instability (MSI), genomically stable and chromosomal instability. In particular, EBV-positive and MSI gastric cancers seem responsive to novel immunotherapies drugs. The aim of this review is to describe MSI and EBV positive gastric cancer’s subgroups and their relationship with novel immunotherapy.

53 citations

Journal ArticleDOI
TL;DR: The authors review the emerging role of methylene blue, not only as a dye used in clinical practice, but also as a fluorophore in a surgical setting, and discusses the promising potential and challenges and limitations among specific surgical techniques.
Abstract: Methylene blue is a fluorescent dye discovered in 1876 and has since been used in different scientific fields. Only recently has methylene blue been used for intraoperative fluorescent imaging. Here, the authors review the emerging role of methylene blue, not only as a dye used in clinical practice, but also as a fluorophore in a surgical setting. We discuss the promising potential of methylene blue together with the challenges and limitations among specific surgical techniques. A literature review of PubMed and Medline was conducted based on the historical, current and future usage of methylene blue within the field of medicine. We reviewed not only the current usage of methylene blue, but we also tried to grasp its’ function as a fluorophore in five main domains. These domains include the near-infrared imaging visualization of ureters, parathyroid gland identification, pancreatic tumors imaging, detection of breast cancer tumor margins, as well as breast cancer sentinel node biopsy. Methylene blue is used in countless clinical procedures with a relatively low risk for patients. Usage of its fluorescent properties is still at an early stage and more pre-clinical, as well as clinical research, must be performed to fully understand its potentials and limitations.

49 citations

Journal ArticleDOI
06 Nov 2020-Cancers
TL;DR: The biology and role of ROS1 in lung cancer and the underlying acquired mechanisms of resistance to crizotinib are discussed and the promising new agents able to overcome resistance mechanisms and offer alternative efficient therapies are discussed.
Abstract: The treatment of patients affected by non-small cell lung cancer (NSCLC) has been revolutionised by the discovery of druggable mutations. ROS1 (c-ros oncogene) is one gene with druggable mutations in NSCLC. ROS1 is currently targeted by several specific tyrosine kinase inhibitors (TKIs), but only two of these, crizotinib and entrectinib, have received Food and Drug Administration (FDA) approval. Crizotinib is a low molecular weight, orally available TKI that inhibits ROS1, MET and ALK and is considered the gold standard first-line treatment with demonstrated significant activity for lung cancers harbouring ROS1 gene rearrangements. However, crizotinib resistance often occurs, making the treatment of ROS1-positive lung cancers more challenging. A great effort has been undertaken to identify a new generation or ROS1 inhibitors. In this review, we briefly introduce the biology and role of ROS1 in lung cancer and discuss the underlying acquired mechanisms of resistance to crizotinib and the promising new agents able to overcome resistance mechanisms and offer alternative efficient therapies.

37 citations

Journal ArticleDOI
15 Jul 2018-Cells
TL;DR: This mini-review will focus on the current knowledge of FGFR mutations, which lead to tumor formation and summarizes the state-of-the-art therapeutic strategies for targeted treatments against the FGFRs/FGFs axis in the context of BC.
Abstract: Breast cancer (BC) is the most common malignancy and second only to lung cancer in terms of mortality in women. Despite the incredible progress made in this field, metastatic breast cancer has a poor prognosis. In an era of personalized medicine, there is an urgent need for better knowledge of the biology leading to the disease, which can lead to the design of increasingly accurate drugs against patients' specific molecular aberrations. Among one of the actionable targets is the fibroblast growth factor receptor (FGFR) pathway, triggered by specific ligands. The Fibroblast Growth Factor Receptors/Fibroblast Growth Factors (FGFRs/FGFs) axis offers interesting molecular targets to be pursued in clinical development. This mini-review will focus on the current knowledge of FGFR mutations, which lead to tumor formation and summarizes the state-of-the-art therapeutic strategies for targeted treatments against the FGFRs/FGFs axis in the context of BC.

36 citations


Cited by
More filters
Journal Article
TL;DR: Coppe et al. as mentioned in this paper showed that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy, including interleukin (IL)-6 and IL-8.
Abstract: PLoS BIOLOGY Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor Jean-Philippe Coppe 1 , Christopher K. Patil 1[ , Francis Rodier 1,2[ , Yu Sun 3 , Denise P. Mun oz 1,2 , Joshua Goldstein 1¤ , Peter S. Nelson 3 , Pierre-Yves Desprez 1,4 , Judith Campisi 1,2* 1 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 Buck Institute for Age Research, Novato, California, United States of America, 3 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 4 California Pacific Medical Center Research Institute, San Francisco, California, United States of America Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA- damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. Citation: Coppe JP, Patil CK, Rodier F, Sun Y, Mun oz DP, et al. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12): e301. doi:10.1371/journal.pbio.0060301 Introduction Cancer is a multistep disease in which cells acquire increasingly malignant phenotypes. These phenotypes are acquired in part by somatic mutations, which derange normal controls over cell proliferation (growth), survival, invasion, and other processes important for malignant tumorigenesis [1]. In addition, there is increasing evidence that the tissue microenvironment is an important determinant of whether and how malignancies develop [2,3]. Normal tissue environ- ments tend to suppress malignant phenotypes, whereas abnormal tissue environments such at those caused by inflammation can promote cancer progression. Cancer development is restrained by a variety of tumor suppressor genes. Some of these genes permanently arrest the growth of cells at risk for neoplastic transformation, a process termed cellular senescence [4–6]. Two tumor suppressor pathways, controlled by the p53 and p16INK4a/pRB proteins, regulate senescence responses. Both pathways integrate multiple aspects of cellular physiology and direct cell fate towards survival, death, proliferation, or growth arrest, depending on the context [7,8]. Several lines of evidence indicate that cellular senescence is a potent tumor-suppressive mechanism [4,9,10]. Many poten- tially oncogenic stimuli (e.g., dysfunctional telomeres, DNA PLoS Biology | www.plosbiology.org damage, and certain oncogenes) induce senescence [6,11]. Moreover, mutations that dampen the p53 or p16INK4a/pRB pathways confer resistance to senescence and greatly increase cancer risk [12,13]. Most cancers harbor mutations in one or both of these pathways [14,15]. Lastly, in mice and humans, a senescence response to strong mitogenic signals, such as those delivered by certain oncogenes, prevents premalignant lesions from progressing to malignant cancers [16–19]. Academic Editor: Julian Downward, Cancer Research UK, United Kingdom Received June 27, 2008; Accepted October 22, 2008; Published December 2, 2008 Copyright: O 2008 Coppe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: CM, conditioned medium; DDR, DNA damage response; ELISA, enzyme-linked immunosorbent assay; EMT, epithelial–mesenchymal transition; GSE, genetic suppressor element; IL, interleukin; MIT, mitoxantrone; PRE, presenescent; PrEC, normal human prostate epithelial cell; REP, replicative exhaustion; SASP, senescence-associated secretory phenotype; SEN, senescent; shRNA, short hairpin RNA; XRA, X-irradiation * To whom correspondence should be addressed. E-mail: jcampisi@lbl.gov [ These authors contributed equally to this work. ¤ Current address: Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America December 2008 | Volume 6 | Issue 12 | e301

2,150 citations

Journal ArticleDOI
TL;DR: The study demonstrates the clinical benefit of anti-programmed death-1 therapy with pembrolizumab among patients with previously treated unresectable or metastatic MSI-H/dMMR noncolorectal cancer.
Abstract: PURPOSEGenomes of tumors that are deficient in DNA mismatch repair (dMMR) have high microsatellite instability (MSI-H) and harbor hundreds to thousands of somatic mutations that encode potential ne...

1,478 citations

Journal ArticleDOI
TL;DR: The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Non-Small Cell Lung Cancer (NSCLC) address all aspects of management for NSCLC as mentioned in this paper.
Abstract: The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Non-Small Cell Lung Cancer (NSCLC) address all aspects of management for NSCLC. These NCCN Guidelines Insights focus on recent updates to the NCCN Guidelines regarding targeted therapies, immunotherapies, and their respective biomarkers.

495 citations