scispace - formally typeset
Search or ask a question
Author

Alberto Dalla Mora

Other affiliations: Leonardo
Bio: Alberto Dalla Mora is an academic researcher from Polytechnic University of Milan. The author has contributed to research in topics: Diffuse optical imaging & Silicon photomultiplier. The author has an hindex of 24, co-authored 115 publications receiving 2439 citations. Previous affiliations of Alberto Dalla Mora include Leonardo.


Papers
More filters
Journal ArticleDOI
TL;DR: The optical characterization of tyrosine, thyroglobulin and iodine using a time domain broadband diffuse optical spectrometer in the 550–1350 nm range is presented and a brief comparison with other known tissue constituents is presented, which reveals key spectral regions for the quantification of the thyroid absorbers in an in vivo scenario.
Abstract: Thyroid plays an important role in the endocrine system of the human body. Its characterization by diffuse optics can open new path ways in the non-invasive diagnosis of thyroid pathologies. Yet, the absorption spectra of tyrosine and thyroglobulin–key tissue constituents specific to the thyroid organ–in the visible to near infrared range are not fully available. Here, we present the optical characterization of tyrosine (powder), thyroglobulin (granular form) and iodine (aqueous solution) using a time domain broadband diffuse optical spectrometer in the 550–1350 nm range. Various systematic errors caused by physics of photo migration and sample inherent properties were effectively suppressed by means of advanced time domain diffuse optical methods. A brief comparison with various other known tissue constituents is presented, which reveals key spectral regions for the quantification of the thyroid absorbers in an in vivo scenario.

543 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a CMOS imager consisting of 32×32 smart pixels, each one able to detect single photons in the 300-900 nm wavelength range and to perform both photon-counting and photon-timing operations on very fast optical events with faint intensities.
Abstract: We present a CMOS imager consisting of 32×32 smart pixels, each one able to detect single photons in the 300-900 nm wavelength range and to perform both photon-counting and photon-timing operations on very fast optical events with faint intensities. In photon-counting mode, the imager provides photon-number (i.e, intensity) resolved movies of the scene under observation, up to 100 000 frames/s. In photon-timing, the imager provides photon arrival times with 312 ps resolution. The result are videos with either time-resolved (e.g., fluorescence) maps of a sample, or 3-D depth-resolved maps of a target scene. The imager is fabricated in a cost-effective 0.35-μm CMOS technology, automotive certified. Each pixel consists of a single-photon avalanche diode with 30 μm photoactive diameter, coupled to an in-pixel 10-bit time-to-digital converter with 320-ns full-scale range, an INL of 10% LSB and a DNL of 2% LSB. The chip operates in global shutter mode, with full frame times down to 10 μs and just 1-ns conversion time. The reconfigurable imager design enables a broad set of applications, like time-resolved spectroscopy, fluorescence lifetime imaging, diffusive optical tomography, molecular imaging, time-of-flight 3-D ranging and atmospheric layer sensing through LIDAR.

218 citations

Journal ArticleDOI
TL;DR: This study shows how these tools could lead on one hand to compact and wearable time-domain devices for point-of-care diagnostics down to the consumer level and on the other hand to powerful systems with exceptional depth penetration and sensitivity.
Abstract: The recent developments in time-domain diffuse optics that rely on physical concepts (e.g., time-gating and null distance) and advanced photonic components (e.g., vertical cavity source-emitting laser as light sources, single photon avalanche diode, and silicon photomultipliers as detectors, fast-gating circuits, and time-to-digital converters for acquisition) are focused. This study shows how these tools could lead on one hand to compact and wearable time-domain devices for point-of-care diagnostics down to the consumer level and on the other hand to powerful systems with exceptional depth penetration and sensitivity.

173 citations

Journal ArticleDOI
TL;DR: The proposed approach proved valuable to detect in vivo a task-related brain activation by detecting a local inhomogeneity deeply buried within a diffusive medium with better spatial resolution, higher signal intensity, and same contrast of a larger interfiber distance.
Abstract: We demonstrate the feasibility of time-resolved diffuse reflectance measurements at small source-detector separations using a single-photon avalanche diode operated in time-gated mode. Photon time distributions at an interfiber distance of 2 mm were obtained on a homogeneous tissue phantom with a dynamic range of 10(6) and collecting photons at arrival times up to 4 ns. Moreover, we were able to detect a local inhomogeneity deeply buried within a diffusive medium with better spatial resolution, higher signal intensity, and same contrast of a larger (20 mm) interfiber distance. Finally, the proposed approach proved valuable to detect in vivo a task-related brain activation.

139 citations

Journal ArticleDOI
TL;DR: This work demonstrates the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser, a Silicon Photomultiplier to maximize light harvesting, and a Single-Photon Avalanche Diode to demonstrate the time-gating capability on the basic SiPM element.
Abstract: Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging.

104 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: The current status of single-photon-source and single-Photon-detector technologies operating at wavelengths from the ultraviolet to the infrared are reviewed and applications of these technologies to quantum communication are discussed.
Abstract: We review the current status of single-photon-source and single-photon-detector technologies operating at wavelengths from the ultraviolet to the infrared. We discuss applications of these technologies to quantum communication, a field currently driving much of the development of single-photon sources and detectors.

1,280 citations

Journal ArticleDOI
TL;DR: The optical characterization of tyrosine, thyroglobulin and iodine using a time domain broadband diffuse optical spectrometer in the 550–1350 nm range is presented and a brief comparison with other known tissue constituents is presented, which reveals key spectral regions for the quantification of the thyroid absorbers in an in vivo scenario.
Abstract: Thyroid plays an important role in the endocrine system of the human body. Its characterization by diffuse optics can open new path ways in the non-invasive diagnosis of thyroid pathologies. Yet, the absorption spectra of tyrosine and thyroglobulin–key tissue constituents specific to the thyroid organ–in the visible to near infrared range are not fully available. Here, we present the optical characterization of tyrosine (powder), thyroglobulin (granular form) and iodine (aqueous solution) using a time domain broadband diffuse optical spectrometer in the 550–1350 nm range. Various systematic errors caused by physics of photo migration and sample inherent properties were effectively suppressed by means of advanced time domain diffuse optical methods. A brief comparison with various other known tissue constituents is presented, which reveals key spectral regions for the quantification of the thyroid absorbers in an in vivo scenario.

543 citations

Journal ArticleDOI
TL;DR: This review aims to provide a comprehensive and state‐of‐the‐art review of fNIRS basics, technical developments, and applications, with a particular focus on neuroimaging in naturalistic environments and social cognitive neuroscience.
Abstract: The past few decades have seen a rapid increase in the use of functional near‐infrared spectroscopy (fNIRS) in cognitive neuroscience. This fast growth is due to the several advances that fNIRS offers over the other neuroimaging modalities such as functional magnetic resonance imaging and electroencephalography/magnetoencephalography. In particular, fNIRS is harmless, tolerant to bodily movements, and highly portable, being suitable for all possible participant populations, from newborns to the elderly and experimental settings, both inside and outside the laboratory. In this review we aim to provide a comprehensive and state‐of‐the‐art review of fNIRS basics, technical developments, and applications. In particular, we discuss some of the open challenges and the potential of fNIRS for cognitive neuroscience research, with a particular focus on neuroimaging in naturalistic environments and social cognitive neuroscience.

440 citations

Journal ArticleDOI
TL;DR: This manuscript reviews fifty ways in which fungi can potentially be utilized as biotechnology and provides a flow chart that can be used to convince funding bodies of the importance of fungi for biotechnological research and as potential products.
Abstract: Fungi are an understudied, biotechnologically valuable group of organisms. Due to the immense range of habitats that fungi inhabit, and the consequent need to compete against a diverse array of other fungi, bacteria, and animals, fungi have developed numerous survival mechanisms. The unique attributes of fungi thus herald great promise for their application in biotechnology and industry. Moreover, fungi can be grown with relative ease, making production at scale viable. The search for fungal biodiversity, and the construction of a living fungi collection, both have incredible economic potential in locating organisms with novel industrial uses that will lead to novel products. This manuscript reviews fifty ways in which fungi can potentially be utilized as biotechnology. We provide notes and examples for each potential exploitation and give examples from our own work and the work of other notable researchers. We also provide a flow chart that can be used to convince funding bodies of the importance of fungi for biotechnological research and as potential products. Fungi have provided the world with penicillin, lovastatin, and other globally significant medicines, and they remain an untapped resource with enormous industrial potential.

404 citations