scispace - formally typeset
Search or ask a question
Author

Alberto Elfes

Bio: Alberto Elfes is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Aerobot & Mobile robot. The author has an hindex of 27, co-authored 110 publications receiving 8639 citations. Previous affiliations of Alberto Elfes include Jet Propulsion Laboratory & IBM.


Papers
More filters
Journal ArticleDOI
TL;DR: An approach to robot perception and world modeling that uses a probabilistic tesselated representation of spatial information called the occupancy grid, a multidimensional random field that maintains stochastic estimates of the occupancy state of the cells in a spatial lattice is reviewed.
Abstract: An approach to robot perception and world modeling that uses a probabilistic tesselated representation of spatial information called the occupancy grid is reviewed. The occupancy grid is a multidimensional random field that maintains stochastic estimates of the occupancy state of the cells in a spatial lattice. To construct a sensor-derived map of the robot's world, the cell state estimates are obtained by interpreting the incoming range readings using probabilistic sensor models. Bayesian estimation procedures allow the incremental updating of the occupancy grid, using readings taken from several sensors over multiple points of view. The use of occupancy grids from mapping and for navigation is examined. Operations on occupancy grids and extensions of the occupancy grid framework are briefly considered. >

2,328 citations

Proceedings ArticleDOI
25 Mar 1985
TL;DR: The use of multiple wide-angle sonar range measurements to map the surroundings of an autonomous mobile robot deals effectively with clutter, and can be used for motion planning and for extended landmark recognition.
Abstract: We describe the use of multiple wide-angle sonar range measurements to map the surroundings of an autonomous mobile robot. A sonar range reading provides information concerning empty and occupied volumes in a cone (subtending 30 degrees in our case) in front of the sensor. The reading is modelled as probability profiles projected onto a rasterized map, where somewhere occupied and everywhere empty areas are represented. Range measurements from multiple points of view (taken from multiple sensors on the robot, and from the same sensors after robot moves) are systematically integrated in the map. Overlapping empty volumes re-inforce each other, and serve to condense the range of occupied volumes. The map definition improves as more readings are added. The final map shows regions probably occupied, probably unoccupied, and unknown areas. The method deals effectively with clutter, and can be used for motion planning and for extended landmark recognition. This system has been tested on the Neptune mobile robot at CMU.

1,911 citations

Journal ArticleDOI
01 Jun 1987
TL;DR: In this article, a sonar-based mapping and navigation system for an autonomous mobile robot operating in unknown and unstructured environments is described, where range measurements from multiple points of view are integrated into a sensor level sonar map, using a robust method that combines the sensor information in such a way as to cope with uncertainties and errors in the data.
Abstract: A sonar-based mapping and navigation system developed for an autonomous mobile robot operating in unknown and unstructured environments is described. The system uses sonar range data to build a multileveled description of the robot's surroundings. Sonar readings are interpreted using probability profiles to determine empty and occupied areas. Range measurements from multiple points of view are integrated into a sensor-level sonar map, using a robust method that combines the sensor information in such a way as to cope with uncertainties and errors in the data. The resulting two-dimensional maps are used for path planning and navigation. From these sonar maps, multiple representations are developed for various kinds of problem-solving activities. Several dimensions of representation are defined: the abstraction axis, the geographical axis, and the resolution axis. The sonar mapping procedures have been implemented as part of an autonomous mobile robot navigation system called Dolphin. The major modules of this system are described and related to the various mapping representations used. Results from actual runs are presented, and further research is mentioned. The system is also situated within the wider context of developing an advanced software architecture for autonomous mobile robots.

1,313 citations

Book
01 Jul 1990
TL;DR: A sonar-based mapping and navigation system developed for an autonomous mobile robot operating in unknown and unstructured environments is described, which uses sonar range data to build a multileveled description of the robot's surroundings.
Abstract: A sonar-based mapping and navigation system developed for an autonomous mobile robot operating in unknown and unstructured environments is described. The system uses sonar range data to build a multileveled description of the robot's surroundings. Sonar readings are interpreted using probability profiles to determine empty and occupied areas. Range measurements from multiple points of view are integrated into a sensor-level sonar map, using a robust method that combines the sensor information in such a way as to cope with uncertainties and errors in the data. The resulting two-dimensional maps are used for path planning and navigation. From these sonar maps, multiple representations are developed for various kinds of problem-solving activities. Several dimensions of representation are defined: the abstraction axis, the geographical axis, and the resolution axis. The sonar mapping procedures have been implemented as part of an autonomous mobile robot navigation system called Dolphin. The major modules of this system are described and related to the various mapping representations used. Results from actual runs are presented, and further research is mentioned. The system is also situated within the wider context of developing an advanced software architecture for autonomous mobile robots.

690 citations


Cited by
More filters
Book
01 Jun 1991
TL;DR: A new architecture for controlling mobile robots is described, building a robust and flexible robot control system that has been used to control a mobile robot wandering around unconstrained laboratory areas and computer machine rooms.
Abstract: A new architecture for controlling mobile robots is described. Layers of control system are built to let the robot operate at increasing levels of competence. Layers are made up of asynchronous modules that communicate over low-bandwidth channels. Each module is an instance of a fairly simple computational machine. Higher-level layers can subsume the roles of lower levels by suppressing their outputs. However, lower levels continue to function as higher levels are added. The result is a robust and flexible robot control system. The system has been used to control a mobile robot wandering around unconstrained laboratory areas and computer machine rooms. Eventually it is intended to control a robot that wanders the office areas of our laboratory, building maps of its surroundings using an onboard arm to perform simple tasks.

7,759 citations

Journal ArticleDOI
01 Mar 1986
TL;DR: In this paper, a new architecture for controlling mobile robots is described, which is made up of asynchronous modules that communicate over low-bandwidth channels, each module is an instance of a fairly simple computational machine.
Abstract: A new architecture for controlling mobile robots is described. Layers of control system are built to let the robot operate at increasing levels of competence. Layers are made up of asynchronous modules that communicate over low-bandwidth channels. Each module is an instance of a fairly simple computational machine. Higher-level layers can subsume the roles of lower levels by suppressing their outputs. However, lower levels continue to function as higher levels are added. The result is a robust and flexible robot control system. The system has been used to control a mobile robot wandering around unconstrained laboratory areas and computer machine rooms. Eventually it is intended to control a robot that wanders the office areas of our laboratory, building maps of its surroundings using an onboard arm to perform simple tasks.

7,291 citations

BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,574 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Proceedings ArticleDOI
26 Oct 2011
TL;DR: A system for accurate real-time mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving low-cost depth camera and commodity graphics hardware, which fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface model of the observed scene in real- time.
Abstract: We present a system for accurate real-time mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving low-cost depth camera and commodity graphics hardware. We fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface model of the observed scene in real-time. The current sensor pose is simultaneously obtained by tracking the live depth frame relative to the global model using a coarse-to-fine iterative closest point (ICP) algorithm, which uses all of the observed depth data available. We demonstrate the advantages of tracking against the growing full surface model compared with frame-to-frame tracking, obtaining tracking and mapping results in constant time within room sized scenes with limited drift and high accuracy. We also show both qualitative and quantitative results relating to various aspects of our tracking and mapping system. Modelling of natural scenes, in real-time with only commodity sensor and GPU hardware, promises an exciting step forward in augmented reality (AR), in particular, it allows dense surfaces to be reconstructed in real-time, with a level of detail and robustness beyond any solution yet presented using passive computer vision.

4,184 citations