scispace - formally typeset
Search or ask a question
Author

Alberto Isidori

Bio: Alberto Isidori is an academic researcher. The author has contributed to research in topics: Control system & Geometric group theory. The author has an hindex of 1, co-authored 1 publications receiving 1614 citations.

Papers
More filters
Book
24 Apr 1986
TL;DR: This chapter discusses the development of Geometric Theory of State Feedback for Multi-Input Multi-Output Systems and its applications in control systems.
Abstract: Contents: Local Decompositions of Control Systems.- Global Decompositions of Control Systems.- Input-Output Maps and Realization Theory.- Elementary Theory of Nonlinear Feedback for Single-Input Single-Output Systems.- Elementary Theory of Nonlinear Feedback for Multi-Input Multi-Output Systems.- Geometric Theory of State Feedback: Tools.- Geometric Theory of State Feedback: Applications.- Appendix A.- Appendix B.- Bibliographical Notes.- References.- Subject Index.

1,696 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A tutorial account of variable structure control with sliding mode is presented, introducing in a concise manner the fundamental theory, main results, and practical applications of this powerful control system design approach.
Abstract: A tutorial account of variable structure control with sliding mode is presented. The purpose is to introduce in a concise manner the fundamental theory, main results, and practical applications of this powerful control system design approach. This approach is particularly attractive for the control of nonlinear systems. Prominent characteristics such as invariance, robustness, order reduction, and control chattering are discussed in detail. Methods for coping with chattering are presented. Both linear and nonlinear systems are considered. Future research areas are suggested and an extensive list of references is included. >

2,884 citations

Journal ArticleDOI
TL;DR: This survey gives a systematic and comprehensive tutorial and summary on the existing disturbance/uncertainty estimation and attenuation techniques, most notably, DOBC, active disturbance rejection control, disturbance accommodation control, and composite hierarchical antidisturbance control.
Abstract: Disturbance-observer-based control (DOBC) and related methods have been researched and applied in various industrial sectors in the last four decades. This survey, at first time, gives a systematic and comprehensive tutorial and summary on the existing disturbance/uncertainty estimation and attenuation techniques, most notably, DOBC, active disturbance rejection control, disturbance accommodation control, and composite hierarchical antidisturbance control. In all of these methods, disturbance and uncertainty are, in general, lumped together, and an observation mechanism is employed to estimate the total disturbance. This paper first reviews a number of widely used linear and nonlinear disturbance/uncertainty estimation techniques and then discusses and compares various compensation techniques and the procedures of integrating disturbance/uncertainty compensation with a (predesigned) linear/nonlinear controller. It also provides concise tutorials of the main methods in this area with clear descriptions of their features. The application of this group of methods in various industrial sections is reviewed, with emphasis on the commercialization of some algorithms. The survey is ended with the discussion of future directions.

1,849 citations

Book
20 May 2005
TL;DR: In this paper, the mathematical underpinnings of robot motion are discussed and a text that makes the low-level details of implementation to high-level algorithmic concepts is presented.
Abstract: A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.

1,811 citations

Journal ArticleDOI
TL;DR: The input-to-state stability property and small-gain theorems are introduced as the cornerstone of new stability criteria for discrete-time nonlinear systems.

1,179 citations

Journal ArticleDOI
TL;DR: This work presents a general framework for nonlinear systems subject to disturbances using disturbance observer based control (DOBC) techniques and develops a nonlinear disturbance observer for disturbances generated by an exogenous system.
Abstract: This work presents a general framework for nonlinear systems subject to disturbances using disturbance observer based control (DOBC) techniques. A two-stage design procedure to improve disturbance attenuation ability of current linear/nonlinear controllers is proposed where the disturbance observer design is separated from the controller design. To facilitate this concept, a nonlinear disturbance observer is developed for disturbances generated by an exogenous system, and global exponential stability is established under certain condition. Furthermore, semiglobal stability condition of the composite controller consisting of a nonlinear controller and the nonlinear disturbance observer is established. The developed method is illustrated by the application to control of a two-link robotic manipulator.

1,077 citations