scispace - formally typeset
Search or ask a question
Author

Alberto Sangiovanni-Vincentelli

Bio: Alberto Sangiovanni-Vincentelli is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Logic synthesis & Finite-state machine. The author has an hindex of 99, co-authored 934 publications receiving 45201 citations. Previous affiliations of Alberto Sangiovanni-Vincentelli include National University of Singapore & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a design methodology for asynchronous interface circuits through an example, a VMEbus master interface, is described using a formalization of timing diagrams, the signal transition graph.
Proceedings Article
01 Oct 2021
TL;DR: The Cyber-Physical Immune System (CPIS) as mentioned in this paper is a collection of hardware and software elements deployed on top of a conventional CPS that collects data from the conventional CPS, utilizes data-driven techniques to identify threats, adapts to the changing environment, alerts the user of any threats or anomalies, and deploys threat-mitigation strategies.
Abstract: Cyber-Physical Systems (CPS) are important components of critical infrastructure and must operate with high levels of reliability and security. We propose a conceptual approach to securing CPSs: the Cyber-Physical Immune System (CPIS), a collection of hardware and software elements deployed on top of a conventional CPS. Inspired by its biological counterpart, the CPIS comprises an independent network of distributed computing units that collects data from the conventional CPS, utilizes data-driven techniques to identify threats, adapts to the changing environment, alerts the user of any threats or anomalies, and deploys threat-mitigation strategies.
Journal ArticleDOI
TL;DR: Scenic as discussed by the authors is a probabilistic programming language for writing formal models of the environments of cyber-physical systems, which has been successfully used for the design and analysis of CPS in a variety of domains.
Abstract: We present a major new version of Scenic, a probabilistic programming language for writing formal models of the environments of cyber-physical systems. Scenic has been successfully used for the design and analysis of CPS in a variety of domains, but earlier versions are limited to environments which are essentially two-dimensional. In this paper, we extend Scenic with native support for 3D geometry, introducing new syntax which provides expressive ways to describe 3D configurations while preserving the simplicity and readability of the language. We replace Scenic's simplistic representation of objects as boxes with precise modeling of complex shapes, including a ray tracing-based visibility system that accounts for object occlusion. We also extend the language to support arbitrary temporal requirements expressed in LTL, and build an extensible Scenic parser generated from a formal grammar of the language. Finally, we illustrate the new application domains these features enable with case studies that would have been impossible to accurately model in Scenic 2.
Book ChapterDOI
01 Jan 1998
TL;DR: The design, analysis and simulation of oscillators often require techniques which are specific for autonomous systems, particularly for on-chip clock generation for microprocessors.
Abstract: Oscillators are among the key components of many different kinds of electronic systems. They are used for on-chip clock generation for microprocessors. Every communications receiver/transmitter has at least one oscillator that is used in the frequency synthesis of an oscillation signal which up or down converts the incoming/outgoing signal. Oscillators have one property that makes them quite unique from several aspects: They are autonomous systems. They generate an oscillatory signal at their output without an input (apart from a power supply input, and a control signal that sets the frequency), as opposed to amplifiers and mixers which generate an output when they are being driven with some input signals. The design, analysis and simulation of oscillators often require techniques which are specific for autonomous systems.
Journal ArticleDOI
TL;DR: In this paper , the authors compare the design processes between electronics and building design, highlight similarities and differences in their approaches, and examine challenges and opportunities associated with bringing the concept of design automation from electronics to building design.
Abstract: Design automation, which involves the use of software tools and technologies to streamline the design process, has been widely adopted in the electronics industry, resulting in significant advancements in product development and manufacturing. However, building design, which involves the creation of complex structures and systems, has traditionally lagged behind in leveraging design automation technologies. Despite extensive research on design automation in the building industry, its application in the current design of buildings is limited. This paper aims to (1) compare the design processes between electronics and building design, (2) highlight similarities and differences in their approaches, and (3) examine challenges and opportunities associated with bringing the concept of design automation from electronics to building design.

Cited by
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
Rainer Storn1, Kenneth Price
TL;DR: In this article, a new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented, which requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.
Abstract: A new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented. By means of an extensive testbed it is demonstrated that the new method converges faster and with more certainty than many other acclaimed global optimization methods. The new method requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.

24,053 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a data structure for representing Boolean functions and an associated set of manipulation algorithms, which have time complexity proportional to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large.
Abstract: In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on the ordering of decision variables in the graph. Although a function requires, in the worst case, a graph of size exponential in the number of arguments, many of the functions encountered in typical applications have a more reasonable representation. Our algorithms have time complexity proportional to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large. We present experimental results from applying these algorithms to problems in logic design verification that demonstrate the practicality of our approach.

9,021 citations

Book
25 Apr 2008
TL;DR: Principles of Model Checking offers a comprehensive introduction to model checking that is not only a text suitable for classroom use but also a valuable reference for researchers and practitioners in the field.
Abstract: Our growing dependence on increasingly complex computer and software systems necessitates the development of formalisms, techniques, and tools for assessing functional properties of these systems. One such technique that has emerged in the last twenty years is model checking, which systematically (and automatically) checks whether a model of a given system satisfies a desired property such as deadlock freedom, invariants, and request-response properties. This automated technique for verification and debugging has developed into a mature and widely used approach with many applications. Principles of Model Checking offers a comprehensive introduction to model checking that is not only a text suitable for classroom use but also a valuable reference for researchers and practitioners in the field. The book begins with the basic principles for modeling concurrent and communicating systems, introduces different classes of properties (including safety and liveness), presents the notion of fairness, and provides automata-based algorithms for these properties. It introduces the temporal logics LTL and CTL, compares them, and covers algorithms for verifying these logics, discussing real-time systems as well as systems subject to random phenomena. Separate chapters treat such efficiency-improving techniques as abstraction and symbolic manipulation. The book includes an extensive set of examples (most of which run through several chapters) and a complete set of basic results accompanied by detailed proofs. Each chapter concludes with a summary, bibliographic notes, and an extensive list of exercises of both practical and theoretical nature.

4,905 citations