scispace - formally typeset
Search or ask a question
Author

Alberto Sangiovanni-Vincentelli

Bio: Alberto Sangiovanni-Vincentelli is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Logic synthesis & Finite-state machine. The author has an hindex of 99, co-authored 934 publications receiving 45201 citations. Previous affiliations of Alberto Sangiovanni-Vincentelli include National University of Singapore & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a successive approximation analog-to-digital converter (ADC) architecture is presented that programs its comparator threshold at runtime to approximate the input signal via binary search.
Abstract: A successive approximation analog-to-digital converter (ADC) architecture is presented that programs its comparator threshold at runtime to approximate the input signal via binary search. While targeting medium resolutions and speed, the threshold configuring (TC) ADC achieves low power consumption and small area occupation by using a fully dynamic configurable comparator and an asynchronous controller, with no need for a highly linear feedback D/A converter. The TC-ADC embeds its own references, and relies on a minimal amount of passive components or calibration loops. A 6-bit prototype implementation in 90-nm digital CMOS technology achieves 32-dB SNDR at 50 MS/s and consumes 240 μW from 1-V analog and 0.7-V digital supplies. This results in 150 fJ/conversion-step in a core area occupation of only 0.0055 mm .

67 citations

Book ChapterDOI
01 Jan 1993
TL;DR: It is argued that any solution to the false path problem inherently incorporates a delay model, and the answer is given in the context of this model.
Abstract: We consider anew the false path problem in timing verification. We argue that any solution to the false path problem inherently incorporates a delay model, and the answer is given in the context of this model. We make explicit the delay model underlying both the “floating” and “transition” sensitization computations, and give the basic assumption underying gate sensitization. We extend sensitization 88theory for the delay model underlying the ”floating mode“ computation to general (complex, possibly asymmetric) gates. This leads to the ability to compute the exact delay of a circuit under the given delay model. We give a new delay model and sensitization computation for ”transition mode“ under a bounded delay model and show that for every bounded delay model there is a natural time quantum such that on each integer-multiple bounded interval of the quantum every signal is a constant. Algorithms for exact delay computation for both floating mode and transition mode delay are given. An implementation for the floating mode model yields practical results on large benchmark circuits.

66 citations

Proceedings ArticleDOI
24 Jun 1990
TL;DR: It is hoped that the constraint-based approach suggested in this paper, if applied to both placement and routing, will reduce the need of time consuming layout-extraction-simulation iterations in the physical design phase of analog circuits.
Abstract: An approach for generating constraints on interconnect parasitics to drive the routing of analog circuits is presented. The approach involves (a) generation of a set of bounding constraints on the critical parasitics of a circuit to provide maximum flexibility to the router while meeting the performance constraints, and (b) deriving a set of matching constraints on the parasitics from matched-node-pair and matched-branch-pair information on differential circuits. A prototype constraint generator is described. It is hoped that the constraint-based approach suggested in this paper, if applied to both placement and routing, will reduce the need of time consuming layout-extraction-simulation iterations in the physical design phase of analog circuits. >

66 citations

01 Jan 2004
TL;DR: The technical cores of the chapter are two case-studies on heterogeneous fault tolerance and discrepancy minimization-based fault detection and correction and a brief survey of the future directions for fault tolerance research in wireless sensor networks.
Abstract: In this Chapter, we address fault tolerance in wireless sensor networks. In order to make the presentation self-contained, we start by providing a short summary of sensor networks and classical fault tolerance techniques. After that, we discuss the three phases of fault tolerance (fault models, fault detection and identification and resiliency mechanisms) at four levels of abstractions (hardware, system software, middleware, and applications) and four scopes (components of individual node, individual node, network, and the distributed system). The technical cores of the chapter are two case-studies on heterogeneous fault tolerance and discrepancy minimization-based fault detection and correction. We conclude the chapter with a brief survey of the future directions for fault tolerance research in wireless sensor networks.

66 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
Rainer Storn1, Kenneth Price
TL;DR: In this article, a new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented, which requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.
Abstract: A new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented. By means of an extensive testbed it is demonstrated that the new method converges faster and with more certainty than many other acclaimed global optimization methods. The new method requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.

24,053 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a data structure for representing Boolean functions and an associated set of manipulation algorithms, which have time complexity proportional to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large.
Abstract: In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on the ordering of decision variables in the graph. Although a function requires, in the worst case, a graph of size exponential in the number of arguments, many of the functions encountered in typical applications have a more reasonable representation. Our algorithms have time complexity proportional to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large. We present experimental results from applying these algorithms to problems in logic design verification that demonstrate the practicality of our approach.

9,021 citations

Book
25 Apr 2008
TL;DR: Principles of Model Checking offers a comprehensive introduction to model checking that is not only a text suitable for classroom use but also a valuable reference for researchers and practitioners in the field.
Abstract: Our growing dependence on increasingly complex computer and software systems necessitates the development of formalisms, techniques, and tools for assessing functional properties of these systems. One such technique that has emerged in the last twenty years is model checking, which systematically (and automatically) checks whether a model of a given system satisfies a desired property such as deadlock freedom, invariants, and request-response properties. This automated technique for verification and debugging has developed into a mature and widely used approach with many applications. Principles of Model Checking offers a comprehensive introduction to model checking that is not only a text suitable for classroom use but also a valuable reference for researchers and practitioners in the field. The book begins with the basic principles for modeling concurrent and communicating systems, introduces different classes of properties (including safety and liveness), presents the notion of fairness, and provides automata-based algorithms for these properties. It introduces the temporal logics LTL and CTL, compares them, and covers algorithms for verifying these logics, discussing real-time systems as well as systems subject to random phenomena. Separate chapters treat such efficiency-improving techniques as abstraction and symbolic manipulation. The book includes an extensive set of examples (most of which run through several chapters) and a complete set of basic results accompanied by detailed proofs. Each chapter concludes with a summary, bibliographic notes, and an extensive list of exercises of both practical and theoretical nature.

4,905 citations