scispace - formally typeset
Search or ask a question
Author

Alberto Sangiovanni-Vincentelli

Bio: Alberto Sangiovanni-Vincentelli is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Logic synthesis & Finite-state machine. The author has an hindex of 99, co-authored 934 publications receiving 45201 citations. Previous affiliations of Alberto Sangiovanni-Vincentelli include National University of Singapore & Lawrence Berkeley National Laboratory.


Papers
More filters
Proceedings ArticleDOI
13 Apr 2009
TL;DR: This work considers a set of control tasks that must be executed on distributed platforms so that end-to-end latencies are within deadlines and optimize this metric by adopting a mathematical programming front-end followed by post-processing heuristics.
Abstract: We consider a set of control tasks that must be executed on distributed platforms so that end-to-end latencies are within deadlines. We investigate how to allocate tasks to nodes, pack signals to messages, allocate messages to buses, and assign priorities to tasks and messages, so that the design is robust with respect to changes in task requirements. The notion of extensibility is used to measure robustness. The extensibility metric measures how much the execution times of tasks can be increased without violating end-to-end deadlines. We optimize this metric by adopting a mathematical programming front-end followed by post-processing heuristics. The proposed algorithm as applied to industrial strength test cases shows its effectiveness in optimizing extensibility and a marked improvement in running time with respect to an approach based on randomized optimization.

49 citations

Journal ArticleDOI
TL;DR: A three-dimensional Green's function-based boundary element method, accelerated through use of the fast Fourier transform, allows the computation of sensitivities with respect to all substrate parameters at a considerably higher speed than any methods reported in the literature.
Abstract: Several methods are presented for highly efficient calculation of substrate noise transport in integrated circuits. A three-dimensional Green's function-based boundary element method, accelerated through use of the fast Fourier transform, allows the computation of sensitivities with respect to all substrate parameters at a considerably higher speed than any methods reported in the literature. Substrate sensitivities are used in a number of physical optimization tools, such as placement and trend analysis. The aim is a fast and accurate estimation of the impact of technology migration and/or layout redesign on substrate noise and, ultimately, on the circuit's overall performance. The suitability of the approach is shown through industrial-strength mixed-mode integrated circuits fabricated on a standard CMOS process.

49 citations

Proceedings ArticleDOI
05 May 1996
TL;DR: A methodology is presented for generating compact models of substrate noise injection in complex logic networks and preliminary results demonstrate the validity of the assumptions and the accuracy of the approach on a set of standard benchmark circuits.
Abstract: A methodology is presented for generating compact models of substrate noise injection in complex logic networks. For a given gate library, the injection patterns associated with a gate and an input transition scheme are accurately evaluated using device-level simulation. Assuming spatial independence of all noise generating devices, the cumulative switching noise resulting from all injection patterns is efficiently computed using a gate-level event-driven simulator. The resulting injected signal is then sampled and translated into an energy spectrum which accounts for fundamental frequencies as well as glitch energy. Preliminary results demonstrate the validity of the assumptions and the accuracy of the approach on a set of standard benchmark circuits.

49 citations

Proceedings ArticleDOI
14 Dec 1994
TL;DR: In this article, the problem of model matching for finite state machines (FSMs) is addressed, which consists of finding a controller for a given open loop system so that the resulting closed loop system matches a desired input-output behavior.
Abstract: The problem of model matching for finite state machines (FSMs) is addressed. This problem consists of finding a controller for a given open loop system so that the resulting closed loop system matches a desired input-output behavior. A characterization of all feasible control laws is given and an efficient synthesis procedure is proposed. >

48 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Journal ArticleDOI
Rainer Storn1, Kenneth Price
TL;DR: In this article, a new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented, which requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.
Abstract: A new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented. By means of an extensive testbed it is demonstrated that the new method converges faster and with more certainty than many other acclaimed global optimization methods. The new method requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.

24,053 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a data structure for representing Boolean functions and an associated set of manipulation algorithms, which have time complexity proportional to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large.
Abstract: In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on the ordering of decision variables in the graph. Although a function requires, in the worst case, a graph of size exponential in the number of arguments, many of the functions encountered in typical applications have a more reasonable representation. Our algorithms have time complexity proportional to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large. We present experimental results from applying these algorithms to problems in logic design verification that demonstrate the practicality of our approach.

9,021 citations

Book
25 Apr 2008
TL;DR: Principles of Model Checking offers a comprehensive introduction to model checking that is not only a text suitable for classroom use but also a valuable reference for researchers and practitioners in the field.
Abstract: Our growing dependence on increasingly complex computer and software systems necessitates the development of formalisms, techniques, and tools for assessing functional properties of these systems. One such technique that has emerged in the last twenty years is model checking, which systematically (and automatically) checks whether a model of a given system satisfies a desired property such as deadlock freedom, invariants, and request-response properties. This automated technique for verification and debugging has developed into a mature and widely used approach with many applications. Principles of Model Checking offers a comprehensive introduction to model checking that is not only a text suitable for classroom use but also a valuable reference for researchers and practitioners in the field. The book begins with the basic principles for modeling concurrent and communicating systems, introduces different classes of properties (including safety and liveness), presents the notion of fairness, and provides automata-based algorithms for these properties. It introduces the temporal logics LTL and CTL, compares them, and covers algorithms for verifying these logics, discussing real-time systems as well as systems subject to random phenomena. Separate chapters treat such efficiency-improving techniques as abstraction and symbolic manipulation. The book includes an extensive set of examples (most of which run through several chapters) and a complete set of basic results accompanied by detailed proofs. Each chapter concludes with a summary, bibliographic notes, and an extensive list of exercises of both practical and theoretical nature.

4,905 citations