scispace - formally typeset
Search or ask a question
Author

Albin J. Gasiewski

Bio: Albin J. Gasiewski is an academic researcher from University of Colorado Boulder. The author has contributed to research in topics: Radiometer & Atmospheric radiative transfer codes. The author has an hindex of 32, co-authored 176 publications receiving 2673 citations. Previous affiliations of Albin J. Gasiewski include University of Colorado Colorado Springs & Earth System Research Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The aircraft data show that the polarimetric channels are much less susceptible to geophysical noise associated with maritime convection than the first two Stokes parameters, and also provides a model for the third Stokes parameter over wind speeds up to 20 m/s.
Abstract: The retrieval of ocean surface wind fields in both one and two dimensions is demonstrated using passive polarimetric microwave imagery obtained from a conical-scanning airborne polarimeter. The retrieval method is based on an empirical geophysical model function (GMF) for ocean surface thermal emission and an adaptive maximum likelihood (ML) wind vector estimator. Data for the GMF were obtained using the polarimetric scanning radiometer/digital (PSR/D) on the NASA P-3 aircraft during the Labrador Sea Deep Convection Experiment in 1997. To develop the GMF, a number of buoy overflights and GPS dropsondes were used, out of which a GMF of 10.7, 18.7, and 37.0 GHz azimuthal harmonics for the first three Stokes parameters was constructed for the SSM/I incident angle of 53.1/spl deg/. The data show repeatable azimuthal harmonic coefficient amplitudes of /spl sim/2-3 K peak-to-peak, with a 100% increase in harmonic amplitudes as the frequency is increased from 10.7 to 37 GHz. The GMF is consistent with and extends the results of two independent studies of SSM/I data and also provides a model for the third Stokes parameter over wind speeds up to 20 m/s. The aircraft data show that the polarimetric channels are much less susceptible to geophysical noise associated with maritime convection than the first two Stokes parameters. The polarimetric measurement technique used in the PSR/D also demonstrates the viability of digital correlation radiometry for aircraft or satellite measurements of the full Stokes vector. The ML retrieval algorithm incorporates the additional information on wind direction available from multiple looks and polarimetric channels in a straightforward manner and accommodates the reduced SNRs of the first two Stokes parameters in the presence of convection by weighting these channels by their inverse SNR.

119 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of dense agricultural crop conditions on soil moisture retrieval using passive microwave remote sensing using aircraft observations were collected using a new version of the Polarimetric Scanning Radiometer (PSR) that provided four C band and four X band frequencies.

114 citations

Journal ArticleDOI
TL;DR: The Southern Great Plains 1999 Experiment was designed to provide C-band datasets for AMSR algorithm development and validation, and the dynamic range of the PSR/C observations indicates that the AMSR instrument can provide useful soil moisture information.
Abstract: The Advanced Microwave Scanning Radiometer (AMSR) holds promise for retrieving soil moisture in regions with low levels of vegetation. Algorithms for this purpose have been proposed, but none have been rigorously evaluated due to a lack of datasets. Accordingly, the Southern Great Plains 1999 Experiment (SGP99) was designed to provide C-band datasets for AMSR algorithm development and validation. Ground observations of soil moisture and related variables were collected in conjunction with aircraft measurements using a C-band radiometer similar to the AMSR sensor (6.92 GHz), the Polarimetric Scanning Radiometer with its C-band scanhead (PSR/C). The study region has been the focus of several previous remote sensing field experiments and contains vegetation conditions compatible with the expected capabilities of C-band for soil moisture retrieval. Flights were conducted under a wide range of soil moisture conditions, thus providing a robust dataset for validation. A significant issue found in data processing was the removal of anthropogenic radio-frequency interference. Several approaches to estimating the parameters of a single-channel soil moisture retrieval algorithm were used. PSR/C soil moisture images show spatial and temporal patterns consistent with meteorological and soil conditions, and the dynamic range of the PSR/C observations indicates that the AMSR instrument can provide useful soil moisture information.

93 citations

Journal ArticleDOI
TL;DR: The second field campaign of the soil moisture experiment (SMEXE03) as discussed by the authors was designed to validate brightness temperature (T/sub B/) data and soil moisture retrieval algorithms for the Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua satellite.
Abstract: Soil Moisture Experiment 2003 (SMEX03) was the second in a series of field campaigns using the National Oceanic and Atmospheric Administration Polarimetric Scanning Radiometer (PSR/CX) designed to validate brightness temperature (T/sub B/) data and soil moisture retrieval algorithms for the Advanced Microwave Scanning Radiometer (AMSR-E) for the Earth Observing System on the Aqua satellite. Objectives related to the PSR/CX during SMEX03 included: calibration and validation of AMSR-E T/sub B/ observations over different climate/vegetation regions of the U.S. [Alabama (AL), Georgia (GA), Oklahoma (OK)], identification of possible areas of radio-frequency interference (RFI), comparison of X-band observations from Tropical Rainfall Measurement Mission Microwave Imager (TMI), AMSR-E, and PSR/CX, and exploring the potential of soil moisture retrieval algorithms using C- and X-band imagery in diverse landscapes. In the current investigation, more than 100 flightlines of PSR/CX data were extensively processed to produce gridded T/sub B/ products for the four study regions. Due to the lack of significant rainfall in OK, generally dry soil moisture conditions were observed. Observations obtained over AL include a wide range of soil moisture and vegetation conditions. Results from the AL site clearly showed a lack of sensitivity to rainfall/soil moisture under forest canopy cover. Quantitative comparisons made with the TMI validated that both the PSR/CX and AMSR-E X-band channels were well calibrated. Spectral analyses indicated that the PSR/CX observations at C-band also are reasonable. As expected, there were varying degrees of RFI in the AMSR-E C-band data for the study sites that will prevent further soil moisture analysis using these data. X-band comparisons of the PSR/CX high-resolution and AMSR-E and TMI low-resolution data indicated a linear scaling for the range of conditions studied in SMEX03. These results will form the basis for further soil moisture investigations.

78 citations

Journal ArticleDOI
TL;DR: In this article, a six-channel airborne total-power millimeter-wave imaging radiometer (MIR) was built to provide measurements of atmospheric water vapor, clouds, and precipitation.
Abstract: A six-channel airborne total-power Millimeter-wave Imaging Radiometer (MIR) was recently built to provide measurements of atmospheric water vapor, clouds, and precipitation. The instrument is a cross-track scanner that has a 3-dB beamwidth of 3.5° and an angular swath of 100°. It measures radiation at the frequencies of 89, 150, 183.3 ± 1, 183.3 ± 3, 183.3 ± 7, and 220 GHz. The inclusion of the 220-GHz receiver makes this instrument unique; no other instrument has made atmospheric radiation measurements using this combination of frequencies. The temperature sensitivities ΔT, based on the actual flight data with a 6.8-ms integration time, are found to be 0.44, 0.44, 1.31, 1.30. 1.02, and 1.07 K. The instrument has two external calibration loads maintained at the temperatures of 330 and 250 K (the ambient temperature at an aircraft altitude of 20 km). These calibration load temperatures are monitored precisely so that the radiometric measurements of the instrument could be made to better than 1 K o...

74 citations


Cited by
More filters
Journal ArticleDOI
06 May 2010
TL;DR: The Soil Moisture Active Passive mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey to make global measurements of the soil moisture present at the Earth's land surface.
Abstract: The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey SMAP will make global measurements of the soil moisture present at the Earth's land surface and will distinguish frozen from thawed land surfaces Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy, and carbon transfers between the land and the atmosphere The accuracy of numerical models of the atmosphere used in weather prediction and climate projections are critically dependent on the correct characterization of these transfers Soil moisture measurements are also directly applicable to flood assessment and drought monitoring SMAP observations can help monitor these natural hazards, resulting in potentially great economic and social benefits SMAP observations of soil moisture and freeze/thaw timing will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes The SMAP mission concept will utilize L-band radar and radiometer instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and net ecosystem exchange of carbon SMAP is scheduled for launch in the 2014-2015 time frame

2,474 citations

Journal ArticleDOI
TL;DR: The AMSR-E sensor calibration and extent of radio frequency interference are currently being assessed, to be followed by quantitative assessments of the soil moisture retrievals, which will provide evaluations of the retrieved soil moisture and enable improved hydrologic applications of the data.
Abstract: The Advanced Microwave Scanning Radiometer (AMSR-E) on the Earth Observing System (EOS) Aqua satellite was launched on May 4, 2002. The AMSR-E instrument provides a potentially improved soil moisture sensing capability over previous spaceborne radiometers such as the Scanning Multichannel Microwave Radiometer and Special Sensor Microwave/Imager due to its combination of low frequency and higher spatial resolution (approximately 60 km at 6.9 GHz). The AMSR-E soil moisture retrieval approach and its implementation are described in this paper. A postlaunch validation program is in progress that will provide evaluations of the retrieved soil moisture and enable improved hydrologic applications of the data. Key aspects of the validation program include assessments of the effects on retrieved soil moisture of variability in vegetation water content, surface temperature, and spatial heterogeneity. Examples of AMSR-E brightness temperature observations over land are shown from the first few months of instrument operation, indicating general features of global vegetation and soil moisture variability. The AMSR-E sensor calibration and extent of radio frequency interference are currently being assessed, to be followed by quantitative assessments of the soil moisture retrievals.

1,387 citations

Journal ArticleDOI
TL;DR: The International Soil Moisture Network (ISMN) as discussed by the authors is a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users.
Abstract: . In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu ) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status May 2011), the ISMN contains data of 19 networks and more than 500 stations located in North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.

914 citations

Journal ArticleDOI
TL;DR: In this paper, the potential of using satellite spectral reflectance measurements to map and monitor vegetation water content (VWC) for corn and soybean canopies was evaluated, and a method developed was used to map daily VWC for the watershed over the 1-month experiment period.

746 citations

Journal ArticleDOI
TL;DR: The Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset as discussed by the authors is a global precipitation dataset for the period 1979-2015 with a 3-hourly temporal and 0.25° spatial resolution designed for hydrological modeling.
Abstract: . Current global precipitation (P) datasets do not take full advantage of the complementary nature of satellite and reanalysis data. Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 1.1, a global P dataset for the period 1979–2015 with a 3-hourly temporal and 0.25° spatial resolution, specifically designed for hydrological modeling. The design philosophy of MSWEP was to optimally merge the highest quality P data sources available as a function of timescale and location. The long-term mean of MSWEP was based on the CHPclim dataset but replaced with more accurate regional datasets where available. A correction for gauge under-catch and orographic effects was introduced by inferring catchment-average P from streamflow (Q) observations at 13 762 stations across the globe. The temporal variability of MSWEP was determined by weighted averaging of P anomalies from seven datasets; two based solely on interpolation of gauge observations (CPC Unified and GPCC), three on satellite remote sensing (CMORPH, GSMaP-MVK, and TMPA 3B42RT), and two on atmospheric model reanalysis (ERA-Interim and JRA-55). For each grid cell, the weight assigned to the gauge-based estimates was calculated from the gauge network density, while the weights assigned to the satellite- and reanalysis-based estimates were calculated from their comparative performance at the surrounding gauges. The quality of MSWEP was compared against four state-of-the-art gauge-adjusted P datasets (WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified) using independent P data from 125 FLUXNET tower stations around the globe. MSWEP obtained the highest daily correlation coefficient (R) among the five P datasets for 60.0 % of the stations and a median R of 0.67 vs. 0.44–0.59 for the other datasets. We further evaluated the performance of MSWEP using hydrological modeling for 9011 catchments ( http://www.gloh2o.org .

746 citations