scispace - formally typeset
Search or ask a question
Author

Aldo Grefhorst

Bio: Aldo Grefhorst is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Insulin resistance & Liver X receptor. The author has an hindex of 26, co-authored 60 publications receiving 3647 citations. Previous affiliations of Aldo Grefhorst include Erasmus University Rotterdam & University Medical Center Groningen.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that, in addition to raising high density lipoprotein cholesterol concentrations, pharmacological LXR activation in mice leads to development of hepatic steatosis and secretion of atherogenic, large TG-rich VLDL particles.

464 citations

01 Jan 2002
TL;DR: In this paper, the oxysterol-activated liver X receptor (LXR) provides a link between sterol and fatty acid metabolism; activation of LXR induces transcription of lipogenic genes.
Abstract: The oxysterol-activated liver X receptor (LXR) provides a link between sterol and fatty acid metabolism; activation of LXR induces transcription of lipogenic genes. This study shows that induction of the lipogenic genes Srebp-1c, Fas, and Acc1 upon administration of the synthetic LXR agonist T0901317 to C57BL/6J mice (10 mg/kg/day, 4 days) is associated with massive hepatic steatosis along the entire liver lobule and a 2.5-fold increase in very low density lipoprotein-triglyceride (VLDL-TG) secretion. The increased VLDL-TG secretion was fully accounted for by formation of larger (129 ± 9 nm versus 94 ± 12 nm, a 2.5-fold increase of particle volume) TG-rich particles. Stimulation of VLDL-TG secretion did not lead to elevated plasma TG levels in C57BL/6J mice, indicating efficient particle metabolism and clearance. However, T0901317 treatment did lead to severe hypertriglyceridemia in mouse models of defective TG-rich lipoprotein clearance, i.e. APOE*3-Leiden transgenic mice (3.2-fold increase) and apoE -/LDLr -/double knockouts (12-fold increase). Incubation of rat hepatoma McA-RH7777 cells with T0901317 also resulted in intracellular TG accumulation and enhanced TG secretion. We conclude that, in addition to raising high density lipoprotein cholesterol concentrations, pharmacological LXR activation in mice leads to development of hepatic steatosis and secretion of atherogenic, large TG-rich VLDL particles.

436 citations

Journal ArticleDOI
01 May 2007-Diabetes
TL;DR: In cultured 3T3-L1 adipocytes, the iminosugar derivative N-(5′-adamantane-1′-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM) counteracted tumor necrosis factor-α–induced abnormalities in glycosphingolipid concentrations and concomitantly reversed abnormalities in insulin signal transduction.
Abstract: A growing body of evidence implicates ceramide and/or its glycosphingolipid metabolites in the pathogenesis of insulin resistance. We have developed a highly specific small molecule inhibitor of glucosylceramide synthase, an enzyme that catalyzes a necessary step in the conversion of ceramide to glycosphingolipids. In cultured 3T3-L1 adipocytes, the iminosugar derivative N-(5'-adamantane-1'-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM) counteracted tumor necrosis factor-alpha-induced abnormalities in glycosphingolipid concentrations and concomitantly reversed abnormalities in insulin signal transduction. When administered to mice and rats, AMP-DNM significantly reduced glycosphingolipid but not ceramide concentrations in various tissues. Treatment of ob/ob mice with AMP-DNM normalized their elevated tissue glucosylceramide levels, markedly lowered circulating glucose levels, improved oral glucose tolerance, reduced A1C, and improved insulin sensitivity in muscle and liver. Similarly beneficial metabolic effects were seen in high fat-fed mice and ZDF rats. These findings provide further evidence that glycosphingolipid metabolites of ceramide may be involved in mediating the link between obesity and insulin resistance and that interference with glycosphingolipid biosynthesis might present a novel approach to the therapy of states of impaired insulin action such as type 2 diabetes.

296 citations


Cited by
More filters
Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, the world will be in a better position to develop treatments for metabolic disease.
Abstract: The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.

3,436 citations

Journal Article
01 Jan 2004-Nature
TL;DR: The authors showed that post-prandial elevation of PYY3-36 may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.
Abstract: Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus. The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons in the arcuate nucleus, which is accessible to peripheral hormones. Peptide YY3-36 (PYY3-36), a Y2R agonist, is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal. Here we show that peripheral injection of PYY3-36 in rats inhibits food intake and reduces weight gain. PYY3-36 also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY3-36 increases c-Fos immunoreactivity in the arcuate nucleus and decreases hypothalamic Npy messenger RNA. Intra-arcuate injection of PYY3-36 inhibits food intake. PYY3-36 also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons. In humans, infusion of normal postprandial concentrations of PYY3-36 significantly decreases appetite and reduces food intake by 33% over 24 h. Thus, postprandial elevation of PYY3-36 may act through the arcuate nucleus Y2R to inhibit feeding in a gut–hypothalamic pathway.

1,960 citations

Journal ArticleDOI
TL;DR: It is not clear whether NAFLD causes metabolic dysfunction or whether metabolic dysfunction is responsible for IHTG accumulation, or possibly both, but it is likely that abnormalities in fatty acid metabolism are key factors involved in the development of insulin resistance, dyslipidemia, and other cardiometabolic risk factors associated withNAFLD.

1,668 citations

Journal ArticleDOI
TL;DR: It is shown here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice, and suggested that pharmacological targeting of T GR5 may constitute a promising incretin-based strategy for the treatment of diabesity and associated metabolic disorders.

1,412 citations

Journal ArticleDOI
TL;DR: Results suggest that modulation of FXR activity and BA metabolism may open new attractive pharmacological approaches for the treatment of the metabolic syndrome and type 2 diabetes.
Abstract: The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an increased risk of cardiovascular disease and diabetes. The metabolic syndrome can be d...

1,376 citations