scispace - formally typeset
Search or ask a question
Author

Aleix G. Güell

Bio: Aleix G. Güell is an academic researcher from University of Warwick. The author has contributed to research in topics: Graphene & Carbon nanotube. The author has an hindex of 23, co-authored 31 publications receiving 1781 citations. Previous affiliations of Aleix G. Güell include University of California, Irvine & Coventry Health Care.

Papers
More filters
Journal ArticleDOI
TL;DR: The power of SECCM in resolving complex structure-activity problems is discussed and considerable new information on electrode processes is provided by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond.
Abstract: Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, at the end of a double-barreled (theta) pipette, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science.

230 citations

Journal ArticleDOI
TL;DR: It is shown that the dc current can be predicted for a fixed probe by solving the Nernst-Planck equation and that the ac response can be derived from this response, and both responses are shown to agree well with experiment.
Abstract: Scanning electrochemical cell microscopy (SECCM) is a high resolution electrochemical scanning probe technique that employs a dual-barrel theta pipet probe containing electrolyte solution and quasi-reference counter electrodes (QRCE) in each barrel. A thin layer of electrolyte protruding from the tip of the pipet ensures that a gentle meniscus contact is made with a substrate surface, which defines the active surface area of an electrochemical cell. The substrate can be an electrical conductor, semiconductor, or insulator. The main focus here is on the general case where the substrate is a working electrode, and both ion-conductance measurements between the QRCEs in the two barrels and voltammetric/amperometric measurements at the substrate can be made simultaneously. In usual practice, a small perpendicular oscillation of the probe with respect to the substrate is employed, so that an alternating conductance current (ac) develops, due to the change in the dimensions of the electrolyte contact (and hence resistance), as well as the direct conductance current (dc). It is shown that the dc current can be predicted for a fixed probe by solving the Nernst-Planck equation and that the ac response can also be derived from this response. Both responses are shown to agree well with experiment. It is found that the pipet geometry plays an important role in controlling the dc conductance current and that this is easily measured by microscopy. A key feature of SECCM is that mass transport to the substrate surface is by diffusion and, for charged analytes, ion migration which can be controlled and varied quantifiably via the bias between the two QRCEs. For a working electrode substrate this means that charged redox-active analytes can be transported to the electrode/solution interface in a well-defined and controllable manner and that relatively fast heterogeneous electron transfer kinetics can be studied. The factors controlling the voltammetric response are determined by both simulation and experiment. Experiments demonstrate the realization of simultaneous quantitative voltammetric and ion conductance measurements and also identify a general rule of thumb that the surface contacted by electrolyte is of the order of the pipet probe dimensions.

186 citations

Journal ArticleDOI
TL;DR: This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution.
Abstract: ConspectusCarbon materials have a long history of use as electrodes in electrochemistry, from (bio)electroanalysis to applications in energy technologies, such as batteries and fuel cells. With the advent of new forms of nanocarbon, particularly, carbon nanotubes and graphene, carbon electrode materials have taken on even greater significance for electrochemical studies, both in their own right and as components and supports in an array of functional composites.With the increasing prominence of carbon nanomaterials in electrochemistry comes a need to critically evaluate the experimental framework from which a microscopic understanding of electrochemical processes is best developed. This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution. These techniques allow particu...

173 citations

Journal ArticleDOI
TL;DR: It is established that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and it is shown that the stacking in multilayers also has a subtle influence on ET kinetics.
Abstract: As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics.

147 citations

Journal ArticleDOI
22 Aug 2008-ACS Nano
TL;DR: The temperature-dependent resistance of 100 microm sections of Au and Pd wires is measured in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy.
Abstract: Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M1 = silver or nickel) layer, 5−100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A (+) photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut ≈300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of the M1 layer. Within this trench, a nanowire of metal M2 is electrodeposited (M2 = gold, platinum, palladium, or bismuth). Finally the PR layer and M1 layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the ...

142 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A general overview of recent examples of luminescent and non-luminescent thermometers working at nanometric scale and the challenges and opportunities in the development for highly sensitive ratiometric thermometers operating at the physiological temperature range with submicron spatial resolution is offered.
Abstract: Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples of luminescent and non-luminescent thermometers working at nanometric scale. Luminescent thermometers encompass organic dyes, QDs and Ln3+ions as thermal probes, as well as more complex thermometric systems formed by polymer and organic–inorganic hybrid matrices encapsulating these emitting centres. Non-luminescent thermometers comprise of scanning thermal microscopy, nanolithography thermometry, carbon nanotube thermometry and biomaterials thermometry. Emphasis has been put on ratiometric examples reporting spatial resolution lower than 1 micron, as, for instance, intracellular thermometers based on organic dyes, thermoresponsive polymers, mesoporous silica NPs, QDs, and Ln3+-based up-converting NPs and β-diketonate complexes. Finally, we discuss the challenges and opportunities in the development for highly sensitive ratiometric thermometers operating at the physiological temperature range with submicron spatial resolution.

1,209 citations

01 Mar 2001
TL;DR: In this paper, a unique chirality assignment was made for both metallic and semiconducting nanotubes of diameter d(t), using the parameters gamma(0) = 2.9 eV and omega(RBM) = 248/d(t).
Abstract: We show that the Raman scattering technique can give complete structural information for one-dimensional systems, such as carbon nanotubes. Resonant confocal micro-Raman spectroscopy of an (n,m) individual single-wall nanotube makes it possible to assign its chirality uniquely by measuring one radial breathing mode frequency omega(RBM) and using the theory of resonant transitions. A unique chirality assignment can be made for both metallic and semiconducting nanotubes of diameter d(t), using the parameters gamma(0) = 2.9 eV and omega(RBM) = 248/d(t). For example, the strong RBM intensity observed at 156 cm(-1) for 785 nm laser excitation is assigned to the (13,10) metallic chiral nanotube on a Si/SiO2 surface.

1,180 citations

08 Jul 2010
TL;DR: Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes, which had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 timesHigher than conventional lithium-ion batteries.
Abstract: Energy storage devices that can deliver high powers have many applications, including hybrid vehicles and renewable energy. Much research has focused on increasing the power output of lithium batteries by reducing lithium-ion diffusion distances, but outputs remain far below those of electrochemical capacitors and below the levels required for many applications. Here, we report an alternative approach based on the redox reactions of functional groups on the surfaces of carbon nanotubes. Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes. The electrode, which is several micrometres thick, can store lithium up to a reversible gravimetric capacity of approximately 200 mA h g(-1)(electrode) while also delivering 100 kW kg(electrode)(-1) of power and providing lifetimes in excess of thousands of cycles, both of which are comparable to electrochemical capacitor electrodes. A device using the nanotube electrode as the positive electrode and lithium titanium oxide as a negative electrode had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 times higher than conventional lithium-ion batteries.

953 citations

Journal ArticleDOI
Wei Xia1, Asif Mahmood1, Zibin Liang1, Ruqiang Zou1, Shaojun Guo1 
TL;DR: Recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR are highlighted, providing new opportunities for enhancing ORR performance at the molecular level.
Abstract: Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high-performance sustainable energy devices. However, the challenging issues associated with non-Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth-abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR.

881 citations

Journal ArticleDOI
TL;DR: This critical review describes the methods that are used for electrografting, their mechanism, the formation and growth of the layers as well as their applications.
Abstract: Electrografting refers to the electrochemical reaction that permits organic layers to be attached to solid conducting substrates. This definition can be extended to reactions involving an electron transfer between the substrate to be modified and the reagent, but also to examples where a reducing or oxidizing reagent is added to produce the reactive species. These methods are interesting as they provide a real bond between the surface and the organic layer. Electrografting applies to a variety of substrates including carbon, metals and their oxides, but also dielectrics such as polymers. Since the 1980s several methods have been developed, either by reduction or oxidation, and some of them have reached an industrial stage. This critical review describes the methods that are used for electrografting, their mechanism, the formation and growth of the layers as well as their applications (742 references).

834 citations