scispace - formally typeset
Search or ask a question
Author

Alejandro López-Ortiz

Bio: Alejandro López-Ortiz is an academic researcher from University of Waterloo. The author has contributed to research in topics: Competitive analysis & List update problem. The author has an hindex of 33, co-authored 193 publications receiving 3719 citations. Previous affiliations of Alejandro López-Ortiz include Open Text Corporation & University of New Brunswick.


Papers
More filters
Book ChapterDOI
01 Jul 2013
TL;DR: It is shown that at least at least $\frac{n}{2}({\rm log} \alpha- 1.22)$ bits of advice is required to obtain an optimal solution for metric spaces of treewidth α, where 4 ≤ α < 2k.
Abstract: We consider the k-Server problem under the advice model of computation when the underlying metric space is sparse. On one side, we introduce i¾?(1)-competitive algorithms for a wide range of sparse graphs, which require advice of (almost) linear size. Namely, we show that for graphs of size N and treewidth α, there is an online algorithm which receives O(n(log α + log log N)) bits of advice and optimally serves a sequence of length n. With a different argument, we show that if a graph admits a system of μ collective tree (q,r)- spanners, then there is a (q + r)-competitive algorithm which receives O(n(log μ + log log N)) bits of advice. Among other results, this gives a 3-competitive algorithm for planar graphs, provided with O(n log log N) bits of advice. On the other side, we show that an advice of size Ω(n) is required to obtain a 1-competitive algorithm for sequences of size n even for the 2-server problem on a path metric of size N i¾? 5. Through another lower bound argument, we show that at least $\frac{n}{2}({\rm log} \alpha- 1.22)$ bits of advice is required to obtain an optimal solution for metric spaces of treewidth α, where 4 ≤ α < 2k.

20 citations

Proceedings ArticleDOI
21 Jun 2004
TL;DR: This paper presents an algorithm for identifying frequently occurring items within a sliding window of the last N items seen over an infinite data stream, given the following constraints: the relative frequencies of the item types can vary over the lifetime of the stream.
Abstract: In this paper, we present an algorithm for identifying frequently occurring items within a sliding window of the last N items seen over an infinite data stream, given the following constraints: (1) the relative frequencies of the item types can vary over the lifetime of the stream, provided that they vary sufficiently slowly that for any sliding window of N tuples, with high probability the window could have been generated by a multinomial distribution. We refer to this as the drifting distribution model in the full version of this paper (Golab et al., 2004). (2) The entire sliding window does not fit in the available memory (otherwise, we could simply count all the distinct item types and return those whose frequencies exceed some threshold). (3) The stream may arrive at a high rate, so only a constant number of operations (amortized) is allowed for the processing of each item.

20 citations

Proceedings ArticleDOI
10 Feb 2014
TL;DR: In this article, the authors consider the problem of managing a bounded size queue buffer where traffic consists of packets of varying size, each packet requires several rounds of processing before it can be transmitted out, and the goal is to maximize the throughput, i.e., total size of successfully transmitted packets.
Abstract: We consider the fundamental problem of managing a bounded size queue buffer where traffic consists of packets of varying size, each packet requires several rounds of processing before it can be transmitted out, and the goal is to maximize the throughput, i.e., total size of successfully transmitted packets. Our work addresses the tension between two conflicting algorithmic approaches: favoring packets with fewer processing requirements as opposed to packets of larger size. We present a novel model for studying such systems and study the performance of online algorithms that aim to maximize throughput.

20 citations

Book ChapterDOI
05 Dec 2009
TL;DR: This work considers the line-separable discrete unit disk cover problem (the set of disk centres can be separated from the set of points by a line) and presents an O(m 2 n)-time algorithm that finds an exact solution.
Abstract: Given m unit disks and n points in the plane, the discrete unit disk cover problem is to select a minimum subset of the disks to cover the points. This problem is NP-hard [11] and the best previous practical solution is a 38-approximation algorithm by Carmi et al. [4]. We first consider the line-separable discrete unit disk cover problem (the set of disk centres can be separated from the set of points by a line) for which we present an O(m 2 n)-time algorithm that finds an exact solution. Combining our line-separable algorithm with techniques from the algorithm of Carmi et al. [4] results in an O(m 2 n 4) time 22-approximate solution to the discrete unit disk cover problem.

20 citations

Journal ArticleDOI
TL;DR: The paper shows that no cache-oblivious search structure can guarantee a search performance of fewer than lg elog BN memory transfers between any two levels of the memory hierarchy, and shows that as k grows, the search costs of the optimal k-level DAM search structure and the optimal caching structure rapidly converge.
Abstract: This paper gives tight bounds on the cost of cache-oblivious searching. The paper shows that no cache-oblivious search structure can guarantee a search performance of fewer than lg elog B N memory transfers between any two levels of the memory hierarchy. This lower bound holds even if all of the block sizes are limited to be powers of 2. The paper gives modified versions of the van Emde Boas layout, where the expected number of memory transfers between any two levels of the memory hierarchy is arbitrarily close to [lg e+O(lg lg B/lg B)]log B N+O(1). This factor approaches lg e≈1.443 as B increases. The expectation is taken over the random placement in memory of the first element of the structure. Because searching in the disk-access machine (DAM) model can be performed in log B N+O(1) block transfers, this result establishes a separation between the (2-level) DAM model and cache-oblivious model. The DAM model naturally extends to k levels. The paper also shows that as k grows, the search costs of the optimal k-level DAM search structure and the optimal cache-oblivious search structure rapidly converge. This result demonstrates that for a multilevel memory hierarchy, a simple cache-oblivious structure almost replicates the performance of an optimal parameterized k-level DAM structure.

19 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Proceedings ArticleDOI
26 Aug 2001
TL;DR: An efficient algorithm for mining decision trees from continuously-changing data streams, based on the ultra-fast VFDT decision tree learner is proposed, called CVFDT, which stays current while making the most of old data by growing an alternative subtree whenever an old one becomes questionable, and replacing the old with the new when the new becomes more accurate.
Abstract: Most statistical and machine-learning algorithms assume that the data is a random sample drawn from a stationary distribution. Unfortunately, most of the large databases available for mining today violate this assumption. They were gathered over months or years, and the underlying processes generating them changed during this time, sometimes radically. Although a number of algorithms have been proposed for learning time-changing concepts, they generally do not scale well to very large databases. In this paper we propose an efficient algorithm for mining decision trees from continuously-changing data streams, based on the ultra-fast VFDT decision tree learner. This algorithm, called CVFDT, stays current while making the most of old data by growing an alternative subtree whenever an old one becomes questionable, and replacing the old with the new when the new becomes more accurate. CVFDT learns a model which is similar in accuracy to the one that would be learned by reapplying VFDT to a moving window of examples every time a new example arrives, but with O(1) complexity per example, as opposed to O(w), where w is the size of the window. Experiments on a set of large time-changing data streams demonstrate the utility of this approach.

1,790 citations

Proceedings ArticleDOI
05 Nov 2003
TL;DR: This work study and evaluate link estimator, neighborhood table management, and reliable routing protocol techniques, and narrow the design space through evaluations on large-scale, high-level simulations to 50-node, in-depth empirical experiments.
Abstract: The dynamic and lossy nature of wireless communication poses major challenges to reliable, self-organizing multihop networks. These non-ideal characteristics are more problematic with the primitive, low-power radio transceivers found in sensor networks, and raise new issues that routing protocols must address. Link connectivity statistics should be captured dynamically through an efficient yet adaptive link estimator and routing decisions should exploit such connectivity statistics to achieve reliability. Link status and routing information must be maintained in a neighborhood table with constant space regardless of cell density. We study and evaluate link estimator, neighborhood table management, and reliable routing protocol techniques. We focus on a many-to-one, periodic data collection workload. We narrow the design space through evaluations on large-scale, high-level simulations to 50-node, in-depth empirical experiments. The most effective solution uses a simple time averaged EWMA estimator, frequency based table management, and cost-based routing.

1,735 citations

Journal ArticleDOI
TL;DR: Data Streams: Algorithms and Applications surveys the emerging area of algorithms for processing data streams and associated applications, which rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity.
Abstract: In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is an overview and survey of data stream algorithmics and is an updated version of [1].

1,598 citations

Book
01 Jan 2006
TL;DR: Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.
Abstract: Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics. The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area. The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas. The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming. - Covers the whole field of constraint programming - Survey-style chapters - Five chapters on applications Table of Contents Foreword (Ugo Montanari) Part I : Foundations Chapter 1. Introduction (Francesca Rossi, Peter van Beek, Toby Walsh) Chapter 2. Constraint Satisfaction: An Emerging Paradigm (Eugene C. Freuder, Alan K. Mackworth) Chapter 3. Constraint Propagation (Christian Bessiere) Chapter 4. Backtracking Search Algorithms (Peter van Beek) Chapter 5. Local Search Methods (Holger H. Hoos, Edward Tsang) Chapter 6. Global Constraints (Willem-Jan van Hoeve, Irit Katriel) Chapter 7. Tractable Structures for CSPs (Rina Dechter) Chapter 8. The Complexity of Constraint Languages (David Cohen, Peter Jeavons) Chapter 9. Soft Constraints (Pedro Meseguer, Francesca Rossi, Thomas Schiex) Chapter 10. Symmetry in Constraint Programming (Ian P. Gent, Karen E. Petrie, Jean-Francois Puget) Chapter 11. Modelling (Barbara M. Smith) Part II : Extensions, Languages, and Applications Chapter 12. Constraint Logic Programming (Kim Marriott, Peter J. Stuckey, Mark Wallace) Chapter 13. Constraints in Procedural and Concurrent Languages (Thom Fruehwirth, Laurent Michel, Christian Schulte) Chapter 14. Finite Domain Constraint Programming Systems (Christian Schulte, Mats Carlsson) Chapter 15. Operations Research Methods in Constraint Programming (John Hooker) Chapter 16. Continuous and Interval Constraints(Frederic Benhamou, Laurent Granvilliers) Chapter 17. Constraints over Structured Domains (Carmen Gervet) Chapter 18. Randomness and Structure (Carla Gomes, Toby Walsh) Chapter 19. Temporal CSPs (Manolis Koubarakis) Chapter 20. Distributed Constraint Programming (Boi Faltings) Chapter 21. Uncertainty and Change (Kenneth N. Brown, Ian Miguel) Chapter 22. Constraint-Based Scheduling and Planning (Philippe Baptiste, Philippe Laborie, Claude Le Pape, Wim Nuijten) Chapter 23. Vehicle Routing (Philip Kilby, Paul Shaw) Chapter 24. Configuration (Ulrich Junker) Chapter 25. Constraint Applications in Networks (Helmut Simonis) Chapter 26. Bioinformatics and Constraints (Rolf Backofen, David Gilbert)

1,527 citations