scispace - formally typeset
Search or ask a question
Author

Alejandro López-Ortiz

Bio: Alejandro López-Ortiz is an academic researcher from University of Waterloo. The author has contributed to research in topics: Competitive analysis & List update problem. The author has an hindex of 33, co-authored 193 publications receiving 3719 citations. Previous affiliations of Alejandro López-Ortiz include Open Text Corporation & University of New Brunswick.


Papers
More filters
Posted Content
TL;DR: In this paper, the authors consider the case in which the counters are associated with the nodes, which for the case of dual graphs of geometric spaces could be argued to be intuitively more natural and likely more efficient.
Abstract: We give lower bounds for various natural node- and edge-based local strategies for exploring a graph. We consider this problem both in the setting of an arbitrary graph as well as the abstraction of a geometric exploration of a space by a robot, both of which have been extensively studied. We consider local exploration policies that use time-of-last- visit or alternatively least-frequently-visited local greedy strategies to select the next step in the exploration path. Both of these strategies were previously considered by Cooper et al. (2011) for a scenario in which counters for the last visit or visit frequency are attached to the edges. In this work we consider the case in which the counters are associated with the nodes, which for the case of dual graphs of geometric spaces could be argued to be intuitively more natural and likely more efficient. Surprisingly, these alternate strategies give worst-case superpolynomial/ exponential time for exploration, whereas the least-frequently visited strategy for edges has a polynomially bounded exploration time, as shown by Cooper et al. (2011).
Book ChapterDOI
05 Aug 2004
TL;DR: During the last 25 years the Internet has grown from being a small academic network connecting a few computer science departments to its present size, connecting more than 285 million computers and serving over 800 million users worldwide.
Abstract: During the last 25 years the Internet has grown from being a small academic network connecting a few computer science departments to its present size, connecting more than 285 million computers and serving over 800 million users worldwide [7].
Journal ArticleDOI
TL;DR: A generic translation of any recursive sequential implementation of a divide-and-conquer algorithm into an implementation that benefits from running in parallel in both multi-cores and GPUs is described.
Abstract: In the last few years, the development of programming languages for general purpose computing on Graphic Processing Units (GPUs) has led to the design and implementation of fast parallel algorithms for this architecture for a large spectrum of applications. Given the streaming-processing characteristics of GPUs, most practical applications consist of tasks that admit highly data-parallel algorithms. Many problems, however, allow for task-parallel solutions or a combination of task and data-parallel algorithms. For these, a hybrid CPU-GPU parallel algorithm that combines the highly parallel stream-processing power of GPUs with the higher scalar power of multi-cores is likely to be superior. In this paper we describe a generic translation of any recursive sequential implementation of a divide-and-conquer algorithm into an implementation that benefits from running in parallel in both multi-cores and GPUs. This translation is generic in the sense that it requires little knowledge of the particular algorithm. We then present a schedule and work division scheme that adapts to the characteristics of each algorithm and the underlying architecture, efficiently balancing the workload between GPU and CPU. Our experiments show a 4.5x speedup over a single core recursive implementation, while demonstrating the accuracy and practicality of the approach.Â
Book ChapterDOI
01 Oct 2005
TL;DR: This work model constraints as integer programs that the authors relax into linear programs that are efficiently propagate global constraints, such as the AT-MOST-1 constraint and the EXTENDED-GCC.
Abstract: Recently, many algorithms have been designed to propagate global constraints. Unfortunately, some global constraints, such the AT-MOST-1 constraint and the EXTENDED-GCC are NP-Hard to propagate. Often, these constraints can easily be written as integer linear programs. Using linear relaxations and other techniques developed by the operation research community, we want to efficiently propagate such constraints. We model constraints as integer programs that we relax into linear programs. For each value v in a variable domain dom(x), we create a binary variable xv. The assignment xv = 1 indicates that x = v while xv = 0 indicates that x ≠ v. This is joint work with Emmanuel Hebrard and Toby Walsh.

Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Proceedings ArticleDOI
26 Aug 2001
TL;DR: An efficient algorithm for mining decision trees from continuously-changing data streams, based on the ultra-fast VFDT decision tree learner is proposed, called CVFDT, which stays current while making the most of old data by growing an alternative subtree whenever an old one becomes questionable, and replacing the old with the new when the new becomes more accurate.
Abstract: Most statistical and machine-learning algorithms assume that the data is a random sample drawn from a stationary distribution. Unfortunately, most of the large databases available for mining today violate this assumption. They were gathered over months or years, and the underlying processes generating them changed during this time, sometimes radically. Although a number of algorithms have been proposed for learning time-changing concepts, they generally do not scale well to very large databases. In this paper we propose an efficient algorithm for mining decision trees from continuously-changing data streams, based on the ultra-fast VFDT decision tree learner. This algorithm, called CVFDT, stays current while making the most of old data by growing an alternative subtree whenever an old one becomes questionable, and replacing the old with the new when the new becomes more accurate. CVFDT learns a model which is similar in accuracy to the one that would be learned by reapplying VFDT to a moving window of examples every time a new example arrives, but with O(1) complexity per example, as opposed to O(w), where w is the size of the window. Experiments on a set of large time-changing data streams demonstrate the utility of this approach.

1,790 citations

Proceedings ArticleDOI
05 Nov 2003
TL;DR: This work study and evaluate link estimator, neighborhood table management, and reliable routing protocol techniques, and narrow the design space through evaluations on large-scale, high-level simulations to 50-node, in-depth empirical experiments.
Abstract: The dynamic and lossy nature of wireless communication poses major challenges to reliable, self-organizing multihop networks. These non-ideal characteristics are more problematic with the primitive, low-power radio transceivers found in sensor networks, and raise new issues that routing protocols must address. Link connectivity statistics should be captured dynamically through an efficient yet adaptive link estimator and routing decisions should exploit such connectivity statistics to achieve reliability. Link status and routing information must be maintained in a neighborhood table with constant space regardless of cell density. We study and evaluate link estimator, neighborhood table management, and reliable routing protocol techniques. We focus on a many-to-one, periodic data collection workload. We narrow the design space through evaluations on large-scale, high-level simulations to 50-node, in-depth empirical experiments. The most effective solution uses a simple time averaged EWMA estimator, frequency based table management, and cost-based routing.

1,735 citations

Journal ArticleDOI
TL;DR: Data Streams: Algorithms and Applications surveys the emerging area of algorithms for processing data streams and associated applications, which rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity.
Abstract: In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is an overview and survey of data stream algorithmics and is an updated version of [1].

1,598 citations

Book
01 Jan 2006
TL;DR: Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.
Abstract: Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics. The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area. The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas. The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming. - Covers the whole field of constraint programming - Survey-style chapters - Five chapters on applications Table of Contents Foreword (Ugo Montanari) Part I : Foundations Chapter 1. Introduction (Francesca Rossi, Peter van Beek, Toby Walsh) Chapter 2. Constraint Satisfaction: An Emerging Paradigm (Eugene C. Freuder, Alan K. Mackworth) Chapter 3. Constraint Propagation (Christian Bessiere) Chapter 4. Backtracking Search Algorithms (Peter van Beek) Chapter 5. Local Search Methods (Holger H. Hoos, Edward Tsang) Chapter 6. Global Constraints (Willem-Jan van Hoeve, Irit Katriel) Chapter 7. Tractable Structures for CSPs (Rina Dechter) Chapter 8. The Complexity of Constraint Languages (David Cohen, Peter Jeavons) Chapter 9. Soft Constraints (Pedro Meseguer, Francesca Rossi, Thomas Schiex) Chapter 10. Symmetry in Constraint Programming (Ian P. Gent, Karen E. Petrie, Jean-Francois Puget) Chapter 11. Modelling (Barbara M. Smith) Part II : Extensions, Languages, and Applications Chapter 12. Constraint Logic Programming (Kim Marriott, Peter J. Stuckey, Mark Wallace) Chapter 13. Constraints in Procedural and Concurrent Languages (Thom Fruehwirth, Laurent Michel, Christian Schulte) Chapter 14. Finite Domain Constraint Programming Systems (Christian Schulte, Mats Carlsson) Chapter 15. Operations Research Methods in Constraint Programming (John Hooker) Chapter 16. Continuous and Interval Constraints(Frederic Benhamou, Laurent Granvilliers) Chapter 17. Constraints over Structured Domains (Carmen Gervet) Chapter 18. Randomness and Structure (Carla Gomes, Toby Walsh) Chapter 19. Temporal CSPs (Manolis Koubarakis) Chapter 20. Distributed Constraint Programming (Boi Faltings) Chapter 21. Uncertainty and Change (Kenneth N. Brown, Ian Miguel) Chapter 22. Constraint-Based Scheduling and Planning (Philippe Baptiste, Philippe Laborie, Claude Le Pape, Wim Nuijten) Chapter 23. Vehicle Routing (Philip Kilby, Paul Shaw) Chapter 24. Configuration (Ulrich Junker) Chapter 25. Constraint Applications in Networks (Helmut Simonis) Chapter 26. Bioinformatics and Constraints (Rolf Backofen, David Gilbert)

1,527 citations