scispace - formally typeset
Search or ask a question
Author

Alejandro Moreno-Gavíra

Bio: Alejandro Moreno-Gavíra is an academic researcher from University of Almería. The author has contributed to research in topics: Trichoderma & Pepper. The author has an hindex of 5, co-authored 8 publications receiving 47 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results reveal that the three isolates of Trichoderma, regardless of their origin, alleviate the stress produced by salinity, resulting in larger plants with an air- dry weight percentage above 80% in saline stress conditions for T. longibrachiatum, or an increase in root-dry weight close to 50% when T. europaeum was applied.
Abstract: This present study evaluates three isolates of Trichoderma as plant growth promoting or biological control agents: Trichoderma aggressivum f. sp. europaeum, Trichoderma saturnisporum, and the marine isolate obtained from Posidonia oceanica, Trichoderma longibrachiatum. The purpose is to contribute to an overall reduction in pesticide residues in the fruit and the environment and to a decrease in chemical fertilizers, the excess of which aggravates one of the most serious abiotic stresses, salinity. The tolerance of the different isolates to increasing concentrations of sodium chloride was evaluated in vitro, as well as their antagonistic capacity against Pythium ultimum. The plant growth promoting capacity and effects of Trichoderma strains on the severity of P. ultimum on melon seedlings under saline conditions were also analysed. The results reveal that the three isolates of Trichoderma, regardless of their origin, alleviate the stress produced by salinity, resulting in larger plants with an air-dry weight percentage above 80% in saline stress conditions for T. longibrachiatum, or an increase in root-dry weight close to 50% when T. aggressivum f. sp. europaeum was applied. Likewise, the three isolates showed antagonistic activity against P. ultimum, reducing the incidence of the disease, with the highest response found for T. longibrachiatum. Biological control of P. ultimum by T. aggressivum f. sp. europaeum and T. saturnisporum is reported for the first time, reducing disease severity by 62.96% and 51.85%, respectively. This is the first description of T. aggressivum f. sp. europaeum as a biological control agent and growth promoter. The application of these isolates can be of enormous benefit to horticultural crops, in both seedbeds and greenhouses.

33 citations

Journal ArticleDOI
10 Dec 2020
TL;DR: Paecilomyces is a cosmopolitan fungus that is mainly known for its nematophagous capacity, but it has also been reported as an insect parasite and biological control agent of several fungi and phytopathogenic bacteria through different mechanisms of action.
Abstract: Incorporating beneficial microorganisms in crop production is the most promising strategy for maintaining agricultural productivity and reducing the use of inorganic fertilizers, herbicides, and pesticides. Numerous microorganisms have been described in the literature as biological control agents for pests and diseases, although some have not yet been commercialised due to their lack of viability or efficacy in different crops. Paecilomyces is a cosmopolitan fungus that is mainly known for its nematophagous capacity, but it has also been reported as an insect parasite and biological control agent of several fungi and phytopathogenic bacteria through different mechanisms of action. In addition, species of this genus have recently been described as biostimulants of plant growth and crop yield. This review includes all the information on the genus Paecilomyces as a biological control agent for pests and diseases. Its growth rate and high spore production rate in numerous substrates ensures the production of viable, affordable, and efficient commercial formulations for agricultural use.

33 citations

Journal ArticleDOI
22 Apr 2020-Agronomy
TL;DR: The application of a higher dose of P. variotii applications resulted in improved most of the growth parameters evaluated, for both horticultural crops, with the best results in the development of pepper seedlings.
Abstract: In the present study, P. variotii, an endophytic fungus isolated from plant roots from the Cabo de Gata Natural Park (Parque Nacional Cabo de Gata—Spain), was tested to determine the effect on the growth promotion of tomato and pepper seeds and seedlings. For these purposes, germination trials in a laboratory and two experiments in a commercial nursery and greenhouse conditions were performed. The P. variotii isolate has shown a high ability to produce siderophores and IAA, but low ability to solubilize P. High values for germination percentage, seedling vigor, root and shoot length were obtained by P. variotii on tomato and pepper against control. P. variotii applications resulted in improved most of the growth parameters evaluated, for both horticultural crops, with the best results in the development of pepper seedlings. The application of a higher dose of P. variotii improved most of the morphological parameters and the Dickson quality index (DQI) value in tomato in seedlings and plants. The establishment of the endophytic fungus at the root enabled its biostimulant effects to persist after transplantation without any additional application. Few studies have analyzed this species as a biostimulant. The positive results from the tests showed its high potential. The application of this isolate can be of enormous benefit to horticultural crops for its high reproductive and establishment capacity.

25 citations

Journal ArticleDOI
TL;DR: In this article, a review of the role of dark septate endophytes (DSEs) as potential biocontrol agents of plant diseases is presented, and the findings of increasing numbers of studies on these fungi and their relationships with their plant hosts are also discussed.
Abstract: Endophytic fungi have been studied in recent decades to understand how they interact with their hosts, the types of relationships they establish, and the potential effects of this interaction. Dark septate endophytes (DSE) are isolated from healthy plants and form melanised structures in the roots, including inter- and intracellular hyphae and microsclerotia, causing low host specificity and covering a wide geographic range. Many studies have revealed beneficial relationships between DSE and their hosts, such as enhanced plant growth, nutrient uptake, and resistance to biotic and abiotic stress. Furthermore, in recent decades, studies have revealed the ability of DSE to mitigate the negative effects of crop diseases, thereby highlighting DSE as potential biocontrol agents of plant diseases (BCAs). Given the importance of these fungi in nature, this article is a review of the role of DSE as BCAs. The findings of increasing numbers of studies on these fungi and their relationships with their plant hosts are also discussed to enable their use as a tool for the integrated management of crop diseases and pests.

21 citations

Journal ArticleDOI
13 Jul 2020-Agronomy
TL;DR: The present study demonstrates the biostimulant capacity of T. aggressivum f.
Abstract: The main objective of this study was to determine the capacity of Trichoderma aggressivum f. europaeum to promote pepper and tomato seedling growth compared to that of T. saturnisporum, a species recently characterised as a biostimulant. Consequently, in vitro seed germination and seedling growth tests were performed under commercial plant nursery conditions. Additionally, the effects of different doses and a mixture of both species on seedling growth under plant nursery and subsequently under greenhouse conditions were determined. Furthermore, mass production of spores was determined in different substrates, and their siderophore and indole acetic acid production and phosphate (P) solubilisation capacity were also determined. Direct application of Trichoderma aggressivum f. europaeum to seeds in vitro neither increases the percentage of pepper and tomato seed germination nor improves their vigour index. However, substrate irrigation using different doses under commercial plant nursery conditions increases the quality of tomato and pepper seedlings. Tomato roots increased by 66.66% at doses of 106 spores per plant. Applying T. aggressivum f. europaeum or T. saturnisporum under plant nursery conditions added value to seedlings because their growth-promoting effect is maintained under greenhouse conditions up to three months after transplantation. The combined application of the two species had no beneficial effect in relation to that of the control. The present study demonstrates the biostimulant capacity of T. aggressivum f. europaeum in pepper and tomato plants under commercial plant nursery and greenhouse conditions.

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review emphasizes the development of biofungicides products from screening to marketing and the problems that hinder their development and particular attention was given to the gaps observed in this sector and factors that hamper its development, particularly in terms of efficacy and legislation procedures.
Abstract: The increase in the world population has generated an important need for both quality and quantity agricultural products, which has led to a significant surge in the use of chemical pesticides to fight crop diseases. Consumers, however, have become very concerned in recent years over the side effects of chemical fungicides on human health and the environment. As a result, research into alternative solutions to protect crops has been imposed and attracted wide attention from researchers worldwide. Among these alternatives, biological controls through beneficial microorganisms have gained considerable importance, whilst several biological control agents (BCAs) have been screened, among them Bacillus, Pantoea, Streptomyces, Trichoderma, Clonostachys, Pseudomonas, Burkholderia, and certain yeasts. At present, biopesticide products have been developed and marketed either to fight leaf diseases, root diseases, or fruit storage diseases. However, no positive correlation has been observed between the number of screened BCAs and available marketed products. Therefore, this review emphasizes the development of biofungicides products from screening to marketing and the problems that hinder their development. Finally, particular attention was given to the gaps observed in this sector and factors that hamper its development, particularly in terms of efficacy and legislation procedures.

107 citations

Journal ArticleDOI
10 Jun 2021
TL;DR: In this paper, the utility of biocontrol agents composed of microorganisms including bacteria, cyanobacteria, and microalgae, plant-based compounds, and recently applied RNAi-based technology is highlighted.
Abstract: Biopesticides are natural, biologically occurring compounds that are used to control various agricultural pests infesting plants in forests, gardens, farmlands, etc. There are different types of biopesticides that have been developed from various sources. This paper underscores the utility of biocontrol agents composed of microorganisms including bacteria, cyanobacteria, and microalgae, plant-based compounds, and recently applied RNAi-based technology. These techniques are described and suggestions are made for their application in modern agricultural practices for managing crop yield losses due to pest infestation. Biopesticides have several advantages over their chemical counterparts and are expected to occupy a large share of the market in the coming period.

81 citations

Journal ArticleDOI
TL;DR: Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential.
Abstract: Rhizosphere filamentous fungi of the genus Trichoderma, a dominant component of various soil ecosystem mycobiomes, are characterized by the ability to colonize plant roots. Detailed knowledge of the properties of Trichoderma, including metabolic activity and the type of interaction with plants and other microorganisms, can ensure its effective use in agriculture. The growing interest in the application of Trichoderma results from their direct and indirect biocontrol potential against a wide range of soil phytopathogens. They act through various complex mechanisms, such as mycoparasitism, the degradation of pathogen cell walls, competition for nutrients and space, and induction of plant resistance. With the constant exposure of plants to a variety of pathogens, especially filamentous fungi, and the increased resistance of pathogens to chemical pesticides, the main challenge is to develop biological protection alternatives. Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential. Most of the species from the genus Trichoderma belong to the plant growth-promoting fungi that produce phytohormones and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme. In the present review, the current status of Trichoderma is gathered, which is especially relevant in plant growth stimulation and the biocontrol of fungal phytopathogens.

77 citations

Journal ArticleDOI
TL;DR: This review aims to give an overview of the microbial ecology of saline soils, but in particular of what is known about the interaction between plants and their soil microbiome, and the mechanisms linked to higher resistance of some plants to harsh saline soil conditions.
Abstract: In extreme environments, the relationships between species are often exclusive and based on complex mechanisms. This review aims to give an overview of the microbial ecology of saline soils, but in particular of what is known about the interaction between plants and their soil microbiome, and the mechanisms linked to higher resistance of some plants to harsh saline soil conditions. Agricultural soils affected by salinity is a matter of concern in many countries. Soil salinization is caused by readily soluble salts containing anions like chloride, sulphate and nitrate, as well as sodium and potassium cations. Salinity harms plants because it affects their photosynthesis, respiration, distribution of assimilates and causes wilting, drying, and death of entire organs. Despite these life-unfavorable conditions, saline soils are unique ecological niches inhabited by extremophilic microorganisms that have specific adaptation strategies. Important traits related to the resistance to salinity are also associated with the rhizosphere-microbiota and the endophytic compartments of plants. For some years now, there have been studies dedicated to the isolation and characterization of species of plants' endophytes living in extreme environments. The metabolic and biotechnological potential of some of these microorganisms is promising. However, the selection of microorganisms capable of living in association with host plants and promoting their survival under stressful conditions is only just beginning. Understanding the mechanisms of these processes and the specificity of such interactions will allow us to focus our efforts on species that can potentially be used as beneficial bioinoculants for crops.

68 citations

Journal ArticleDOI
TL;DR: In this paper, a mini-review summarizes applications of Trichoderma strains in agriculture to control fungal pathogens, nematodes and insects, the involved biocontrol mechanisms, efficacy and inoculation forms in greenhouse, field and post-harvest conditions.
Abstract: A major current challenge is to increase the food production while preserving natural resources. Agricultural practices that enhance the productivity and progressively improve the soil quality are relevant to face this challenge. Trichoderma species are widely used in agriculture to stimulate the plant growth and to control different pathogens affecting crops, representing useful tools for sustainable food production. This mini-review summarizes applications of Trichoderma strains in agriculture to control fungal pathogens, nematodes and insects, the involved biocontrol mechanisms, efficacy and inoculation forms in greenhouse, field and post-harvest conditions. Aspects of Trichoderma handling that influence on biocontrol efficacy such as preventive treatments, frequency of applications and delivery methods are discussed. Strategies useful to improve the antagonistic performance such as the use of native strains, protoplast fusion, formulation, growth on pathogen cell wall medium and combination with other antagonists in integrated treatments are discussed. This mini-review provides practical knowledge to design safe and optimal biocontrol strategies based on Trichoderma and pose challenges to expand its antagonist performance.

49 citations