scispace - formally typeset
Search or ask a question
Author

Aleksandra Trifunovic

Bio: Aleksandra Trifunovic is an academic researcher from University of Cologne. The author has contributed to research in topics: Mitochondrion & Mitochondrial DNA. The author has an hindex of 30, co-authored 80 publications receiving 7840 citations. Previous affiliations of Aleksandra Trifunovic include Max Planck Society & Karolinska Institutet.


Papers
More filters
Journal ArticleDOI
27 May 2004-Nature
TL;DR: The results provide a causative link between mtDNA mutations and ageing phenotypes in mammals by creating homozygous knock-in mice that express a proof-reading-deficient version of PolgA, the nucleus-encoded catalytic subunit of mtDNA polymerase.
Abstract: Point mutations and deletions of mitochondrial DNA (mtDNA) accumulate in a variety of tissues during ageing in humans, monkeys and rodents. These mutations are unevenly distributed and can accumulate clonally in certain cells, causing a mosaic pattern of respiratory chain deficiency in tissues such as heart, skeletal muscle and brain. In terms of the ageing process, their possible causative effects have been intensely debated because of their low abundance and purely correlative connection with ageing. We have now addressed this question experimentally by creating homozygous knock-in mice that express a proof-reading-deficient version of PolgA, the nucleus-encoded catalytic subunit of mtDNA polymerase. Here we show that the knock-in mice develop an mtDNA mutator phenotype with a threefold to fivefold increase in the levels of point mutations, as well as increased amounts of deleted mtDNA. This increase in somatic mtDNA mutations is associated with reduced lifespan and premature onset of ageing-related phenotypes such as weight loss, reduced subcutaneous fat, alopecia (hair loss), kyphosis (curvature of the spine), osteoporosis, anaemia, reduced fertility and heart enlargement. Our results thus provide a causative link between mtDNA mutations and ageing phenotypes in mammals.

2,429 citations

Journal ArticleDOI
TL;DR: The presence of two proteins that interact with mammalian POLRMT may allow flexible regulation of mtDNA gene expression in response to the complex physiological demands of mammalian metabolism.
Abstract: Characterization of the basic transcription machinery of mammalian mitochondrial DNA (mtDNA) is of fundamental biological interest and may also lead to therapeutic interventions for human diseases associated with mitochondrial dysfunction. Here we report that mitochondrial transcription factors B1 (TFB1M) and B2 (TFB2M) are necessary for basal transcription of mammalian mitochondrial DNA (mtDNA). Human TFB1M and TFB2M are expressed ubiquitously and can each support promoter-specific mtDNA transcription in a pure recombinant in vitro system containing mitochondrial RNA polymerase (POLRMT) and mitochondrial transcription factor A. Both TFB1M and TFB2M interact directly with POLRMT, but TFB2M is at least one order of magnitude more active in promoting transcription than TFB1M. Both factors are highly homologous to bacterial rRNA dimethyltransferases, which suggests that an RNA-modifying enzyme has been recruited during evolution to function as a mitochondrial transcription factor. The presence of two proteins that interact with mammalian POLRMT may allow flexible regulation of mtDNA gene expression in response to the complex physiological demands of mammalian metabolism.

598 citations

Journal ArticleDOI
TL;DR: The premature aging phenotypes in mt DNA mutator mice are thus not generated by a vicious cycle of massively increased oxidative stress accompanied by exponential accumulation of mtDNA mutations, and it is proposed that respiratory chain dysfunction per se is the primary inducer of premature aging in mtDNA mutATOR mice.
Abstract: The mitochondrial theory of aging proposes that reactive oxygen species (ROS) generated inside the cell will lead, with time, to increasing amounts of oxidative damage to various cell components. The main site for ROS production is the respiratory chain inside the mitochondria and accumulation of mtDNA mutations, and impaired respiratory chain function have been associated with degenerative diseases and aging. The theory predicts that impaired respiratory chain function will augment ROS production and thereby increase the rate of mtDNA mutation accumulation, which, in turn, will further compromise respiratory chain function. Previously, we reported that mice expressing an error-prone version of the catalytic subunit of mtDNA polymerase accumulate a substantial burden of somatic mtDNA mutations, associated with premature aging phenotypes and reduced lifespan. Here we show that these mtDNA mutator mice accumulate mtDNA mutations in an approximately linear manner. The amount of ROS produced was normal, and no increased sensitivity to oxidative stress-induced cell death was observed in mouse embryonic fibroblasts from mtDNA mutator mice, despite the presence of a severe respiratory chain dysfunction. Expression levels of antioxidant defense enzymes, protein carbonylation levels, and aconitase enzyme activity measurements indicated no or only minor oxidative stress in tissues from mtDNA mutator mice. The premature aging phenotypes in mtDNA mutator mice are thus not generated by a vicious cycle of massively increased oxidative stress accompanied by exponential accumulation of mtDNA mutations. We propose instead that respiratory chain dysfunction per se is the primary inducer of premature aging in mtDNA mutator mice.

530 citations

Journal ArticleDOI
TL;DR: It is demonstrated that respiratory chain dysfunction in DA neurons may be of pathophysiological importance in PD and reduced mtDNA expression and respiratory chain deficiency in midbrain DA neurons leads to a parkinsonism phenotype.
Abstract: Mitochondrial dysfunction is implicated in the pathophysiology of Parkinson's disease (PD), a common age-associated neurodegenerative disease characterized by intraneuronal inclusions (Lewy bodies) and progressive degeneration of the nigrostriatal dopamine (DA) system. It has recently been demonstrated that midbrain DA neurons of PD patients and elderly humans contain high levels of somatic mtDNA mutations, which may impair respiratory chain function. However, clinical studies have not established whether the respiratory chain deficiency is a primary abnormality leading to inclusion formation and DA neuron death, or whether generalized metabolic abnormalities within the degenerating DA neurons cause secondary damage to mitochondria. We have used a reverse genetic approach to investigate this question and created conditional knockout mice (termed MitoPark mice), with disruption of the gene for mitochondrial transcription factor A (Tfam) in DA neurons. The knockout mice have reduced mtDNA expression and respiratory chain deficiency in midbrain DA neurons, which, in turn, leads to a parkinsonism phenotype with adult onset of slowly progressive impairment of motor function accompanied by formation of intraneuronal inclusions and dopamine nerve cell death. Confocal and electron microscopy show that the inclusions contain both mitochondrial protein and membrane components. These experiments demonstrate that respiratory chain dysfunction in DA neurons may be of pathophysiological importance in PD.

521 citations

Journal ArticleDOI
TL;DR: CerS6 inhibition is highlighted as a specific approach for the treatment of obesity and type 2 diabetes mellitus, circumventing the side effects of global ceramide synthesis inhibition.

501 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
19 Oct 2006-Nature
TL;DR: Treatments targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria hold great promise in ageing-related neurodegenerative diseases.
Abstract: Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

5,368 citations

Journal ArticleDOI
TL;DR: It is argued that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.

4,297 citations

Journal ArticleDOI
25 Feb 2005-Cell
TL;DR: The evidence is reviewed that both supports and conflicts with the free radical theory of aging and the growing link between mitochondrial metabolism, oxidant formation, and the biology of aging is examined.

3,870 citations

Journal ArticleDOI
TL;DR: The mitochondria provide a direct link between the authors' environment and their genes and the mtDNA variants that permitted their forbears to energetically adapt to their ancestral homes are influencing their health today.
Abstract: Life is the interplay between structure and energy, yet the role of energy deficiency in human disease has been poorly explored by modern medicine. Since the mitochondria use oxidative phosphorylation (OXPHOS) to convert dietary calories into usable energy, generating reactive oxygen species (ROS) as a toxic by-product, I hypothesize that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. Because mitochondrial DNA (mtDNA) is present in thousands of copies per cell and encodes essential genes for energy production, I propose that the delayed-onset and progressive course of the agerelated diseases results from the accumulation of somatic mutations in the mtDNAs of post-mitotic tissues. The tissue-specific manifestations of these diseases may result from the varying energetic roles and needs of the different tissues. The variation in the individual and regional predisposition to degenerative diseases and cancer may result from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymorphisms. Therefore the mitochondria provide a direct link between our environment and our genes and the mtDNA variants that permitted our forbears to energetically adapt to their ancestral homes are influencing our health today.

3,016 citations