scispace - formally typeset
Search or ask a question
Author

Alena Bartonova

Bio: Alena Bartonova is an academic researcher from Norwegian Institute for Air Research. The author has contributed to research in topics: Air quality index & European union. The author has an hindex of 31, co-authored 94 publications receiving 3411 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions shows that their performance varies spatially and temporally.

607 citations

Journal ArticleDOI
TL;DR: Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment, and it can be argued that with a significant future expansion of monitoring networks, including indoor environments, there may be less need for wearable or portable sensors/monitors to assess personal exposure.

418 citations

Journal ArticleDOI
TL;DR: The results indicate that the data fusion method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network.

229 citations

Journal ArticleDOI
TL;DR: Smoking, in particular from cigarettes, exposure to arsenic in drinking water, and occupational exposure to aromatic amines and 4,4'-methylenebis(2-chloroaniline) are well known risk factors for various diseases including bladder cancer.
Abstract: Many epidemiological studies and reviews have been performed to identify the causes of bladder cancer. The aim of this review is to investigate the links between various environmental risk factors and cancer of the bladder. A systematic literature search was performed using PubMed, Science Direct, Scopus, Scholar Google and Russian Google databases to identify reviews and epidemiological studies on bladder cancer risk factors associated with the environment published between 1998 and 2010. Only literature discussing human studies was considered. Smoking, mainly cigarette smoking, is a well known risk factor for various diseases, including bladder cancer. Another factor strongly associated with bladder cancer is exposure to arsenic in drinking water at concentrations higher than 300 µg/l. The most notable risk factor for development of bladder cancer is occupational exposure to aromatic amines (2-naphthylamine, 4-aminobiphenyl and benzidine) and 4,4'-methylenebis(2-chloroaniline), which can be found in the products of the chemical, dye and rubber industries as well as in hair dyes, paints, fungicides, cigarette smoke, plastics, metals and motor vehicle exhaust. There are also data suggesting an effect from of other types of smoking besides cigarettes (cigar, pipe, Egyptian waterpipe, smokeless tobacco and environmental tobacco smoking), and other sources of arsenic exposure such as air, food, occupational hazards, and tobacco. Other studies show that hairdressers and barbers with occupational exposure to hair dyes experience enhanced risk of bladder cancer. For example, a study related to personal use of hair dyes demonstrates an elevated bladder cancer risk for people who used permanent hair dyes at least once a month, for one year or longer. Smoking, in particular from cigarettes, exposure to arsenic in drinking water, and occupational exposure to aromatic amines and 4,4'-methylenebis(2-chloroaniline) are well known risk factors for various diseases including bladder cancer. Although the number of chemicals related to occupational exposure is still growing, it is worth noting that it may take several years or decades between exposure and the subsequent cancer.

226 citations

Journal ArticleDOI
TL;DR: A proposed cause-effects diagram for NPs is designed considering both NNPs and ENPs and represents a valuable information package and user-friendly tool for various stakeholders including students, researchers and policy makers, to better understand and communicate on issues related to NPs.
Abstract: Nanoparticles (NPs) cause concern for health and safety as their impact on the environment and humans is not known. Relatively few studies have investigated the toxicological and environmental effects of exposure to naturally occurring NPs (NNPs) and man-made or engineered NPs (ENPs) that are known to have a wide variety of effects once taken up into an organism. A review of recent knowledge (between 2000-2010) on NP sources, and their behaviour, exposure and effects on the environment and humans was performed. An integrated approach was used to comprise available scientific information within an interdisciplinary logical framework, to identify knowledge gaps and to describe environment and health linkages for NNPs and ENPs. The causal diagram has been developed as a method to handle the complexity of issues on NP safety, from their exposure to the effects on the environment and health. It gives an overview of available scientific information starting with common sources of NPs and their interactions with various environmental processes that may pose threats to both human health and the environment. Effects of NNPs on dust cloud formation and decrease in sunlight intensity were found to be important environmental changes with direct and indirect implication in various human health problems. NNPs and ENPs exposure and their accumulation in biological matrices such as microbiota, plants and humans may result in various adverse effects. The impact of some NPs on human health by ROS generation was found to be one of the major causes to develop various diseases. A proposed cause-effects diagram for NPs is designed considering both NNPs and ENPs. It represents a valuable information package and user-friendly tool for various stakeholders including students, researchers and policy makers, to better understand and communicate on issues related to NPs.

164 citations


Cited by
More filters
01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment.
Abstract: Nanomaterials (NMs) have gained prominence in technological advancements due to their tunable physical, chemical and biological properties with enhanced performance over their bulk counterparts. NMs are categorized depending on their size, composition, shape, and origin. The ability to predict the unique properties of NMs increases the value of each classification. Due to increased growth of production of NMs and their industrial applications, issues relating to toxicity are inevitable. The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment. The review presents an overview of the history and classifications of NMs and gives an overview of the various sources of NPs and NSMs, from natural to synthetic, and their toxic effects towards mammalian cells and tissue. Additionally, the types of toxic reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed.

1,976 citations

Journal ArticleDOI
TL;DR: It is shown that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization.
Abstract: In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time.

1,799 citations

01 Jul 2004
TL;DR: In this article, the authors developed a center to address state-of-the-art research, create innovating educational programs, and support technology transfers using commercially viable results to assist the Army Research Laboratory to develop the next generation Future Combat System in the telecommunications sector that assures prevention of perceived threats, and non-line of sight/Beyond line of sight lethal support.
Abstract: Home PURPOSE OF THE CENTER: To develop the center to address state-of-the-art research, create innovating educational programs, and support technology transfers using commercially viable results to assist the Army Research Laboratory to develop the next generation Future Combat System in the telecommunications sector that assures prevention of perceived threats, and Non Line of Sight/Beyond Line of Sight lethal support.

1,713 citations

Journal ArticleDOI
TL;DR: Evidence of a plateau in the prevalence of asthma in many Western countries and the evidence of possible causal relations to factors such as air pollution, obesity, diet, and exposure to infections, antibiotics, and allergens is found.
Abstract: This review surveys the data on the increase in the prevalence of asthma in recent decades and finds evidence of a plateau in many Western countries. The authors examine the evidence of possible causal relations to factors such as air pollution, obesity, diet, and exposure to infections, antibiotics, and allergens, including exposures at very young ages. The most strongly supported preventive measure is the avoidance of passive and active exposure to smoke.

1,622 citations