scispace - formally typeset
Search or ask a question
Author

Alessandra De Martino

Bio: Alessandra De Martino is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Phaeodactylum tricornutum & Thalassiosira pseudonana. The author has an hindex of 14, co-authored 15 publications receiving 2501 citations. Previous affiliations of Alessandra De Martino include Laboratory of Molecular Biology & Stazione Zoologica Anton Dohrn.

Papers
More filters
Journal ArticleDOI
13 Nov 2008-Nature
TL;DR: Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms, and documents the presence of hundreds of genes from bacteria, likely to provide novel possibilities for metabolite management and for perception of environmental signals.
Abstract: Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one- fifth of the primary productivity on Earth(1,2). The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology(3-5). Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (similar to 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.

1,500 citations

Journal ArticleDOI
TL;DR: It is demonstrated how the accurate perception of diatom-derived reactive aldehydes can determine cell fate in diatoms and proposed the existence of a sophisticated stress surveillance system in di atoms, which has important implications for understanding the cellular mechanisms responsible for acclimation versus death during phytoplankton bloom successions.
Abstract: Diatoms are an important group of eukaryotic phytoplankton, responsible for about 20% of global primary productivity. Study of the functional role of chemical signaling within phytoplankton assemblages is still in its infancy although recent reports in diatoms suggest the existence of chemical-based defense strategies. Here, we demonstrate how the accurate perception of diatom-derived reactive aldehydes can determine cell fate in diatoms. In particular, the aldehyde (2E,4E/Z)-decadienal (DD) can trigger intracellular calcium transients and the generation of nitric oxide (NO) by a calcium-dependent NO synthase-like activity, which results in cell death. However, pretreatment of cells with sublethal doses of aldehyde can induce resistance to subsequent lethal doses, which is reflected in an altered calcium signature and kinetics of NO production. We also present evidence for a DD-derived NO-based intercellular signaling system for the perception of stressed bystander cells. Based on these findings, we propose the existence of a sophisticated stress surveillance system in diatoms, which has important implications for understanding the cellular mechanisms responsible for acclimation versus death during phytoplankton bloom successions.

292 citations

Journal ArticleDOI
TL;DR: Using knockdown Phaeodactylum tricornutum transgenic lines, the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family is revealed, denoted LHCX1, in modulation of excess light energy dissipation in diatoms.
Abstract: Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lines, we reveal the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family, denoted LHCX1, in modulation of excess light energy dissipation. In contrast to green algae, this gene is already maximally expressed in nonstressful light conditions and encodes a protein required for efficient light responses and growth. LHCX1 also influences natural variability in photoresponse, as evidenced in ecotypes isolated from different latitudes that display different LHCX1 protein levels. We conclude, therefore, that this gene plays a pivotal role in managing light responses in diatoms.

251 citations

Journal ArticleDOI
TL;DR: This study has compiled a historical summary of the known P. tricornutum species resources and provided a genetic and phenotypic overview of 10 different axenic strains and developed specific primers to amplify ITS2 sequences and have successfully identified it in environmental samples.
Abstract: In the last few years, genome-based studies in diatoms have received a major boost following the genome sequencing of the centric species Thalassiosira pseudonana Hasle et Heimdal and the pleiomorphic raphid pennate diatom Phaeodactylum tricornutum Bohlin. In addition, molecular tools, such as genetic transformation, have been developed for both species. Despite these molecular advances, relatively little is known regarding the genetic diversity of the available strains of these diatoms. In this study, we have compiled a historical summary of the known P. tricornutum species resources and have provided a genetic and phenotypic overview of 10 different axenic strains. Examination of intraspecies genetic diversity based on internal transcribed spacer 2 (ITS2) sequence and amplified fragment length polymorphism (AFLP) analyses indicate four different genotypes. Seven strains are predominantly fusiform, whereas one strain is predominantly oval, and another is predominantly triradiate. Another is defined as a tropical strain because it appears better acclimated to growth at higher temperatures. Observations in the natural environment indicate that P. tricornutum is a coastal marine diatom that is able to adapt to unstable environments, such as estuaries and rock pools. Because it has rarely been noted in nature, we have developed specific primers to amplify ITS2 sequences and have successfully identified it in environmental samples. These resources should become useful tools for the diatom community when combined with the whole genome sequence and will open up a range of new possibilities for experimental investigations that can exploit the genotypic and phenotypic characteristics described.

223 citations

Journal ArticleDOI
TL;DR: The digital gene expression database represents a new resource for identifying candidate diatom-specific genes involved in processes of major ecological relevance and facilitating studies of gene function, genome annotation and the molecular basis of species diversity.
Abstract: Background Diatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis Two whole genome sequences are now available Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods High throughput tools are needed, therefore, to associate functions with diatom-specific genes

99 citations


Cited by
More filters
Journal ArticleDOI
13 Aug 2010-Science
TL;DR: Although microalgae are not yet produced at large scale for bulk applications, recent advances—particularly in the methods of systems biology, genetic engineering, and biorefining—present opportunities to develop this process in a sustainable and economical way within the next 10 to 15 years.
Abstract: Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing for arable land. Worldwide, research and demonstration programs are being carried out to develop the technology needed to expand algal lipid production from a craft to a major industrial process. Although microalgae are not yet produced at large scale for bulk applications, recent advances—particularly in the methods of systems biology, genetic engineering, and biorefining—present opportunities to develop this process in a sustainable and economical way within the next 10 to 15 years.

1,712 citations

Journal ArticleDOI
13 Nov 2008-Nature
TL;DR: Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms, and documents the presence of hundreds of genes from bacteria, likely to provide novel possibilities for metabolite management and for perception of environmental signals.
Abstract: Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one- fifth of the primary productivity on Earth(1,2). The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology(3-5). Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (similar to 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.

1,500 citations

Journal ArticleDOI
TL;DR: Worldwide research on bioactive compounds in seaweed is reviewed, mainly of nine genera or species of seaweed, which are also available in European temperate Atlantic waters, i.e. Laminaria sp.
Abstract: Seaweed is more than the wrap that keeps rice together in sushi. Seaweed biomass is already used for a wide range of other products in food, including stabilising agents. Biorefineries with seaweed as feedstock are attracting worldwide interest and include low-volume, high value-added products and vice versa. Scientific research on bioactive compounds in seaweed usually takes place on just a few species and compounds. This paper reviews worldwide research on bioactive compounds, mainly of nine genera or species of seaweed, which are also available in European temperate Atlantic waters, i.e. Laminaria sp., Fucus sp., Ascophyllum nodosum, Chondrus crispus, Porphyra sp., Ulva sp., Sargassum sp., Gracilaria sp. and Palmaria palmata. In addition, Undaria pinnatifida is included in this review as this is globally one of the most commonly produced, investigated and available species. Fewer examples of other species abundant worldwide have also been included. This review will supply fundamental information for biorefineries in Atlantic Europe using seaweed as feedstock. Preliminary selection of one or several candidate seaweed species will be possible based on the summary tables and previous research described in this review. This applies either to the choice of high value-added bioactive products to be exploited in an available species or to the choice of seaweed species when a bioactive compound is desired. Data are presented in tables with species, effect and test organism (if present) with examples of uses to enhance comparisons. In addition, scientific experiments performed on seaweed used as animal feed are presented, and EU, US and Japanese legislation on functional foods is reviewed.

1,488 citations

Journal ArticleDOI
TL;DR: Potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes are focused on.
Abstract: There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes.

1,079 citations

Journal ArticleDOI
Patrick J. Keeling1, Patrick J. Keeling2, Fabien Burki2, Heather M. Wilcox3, Bassem Allam4, Eric E. Allen5, Linda A. Amaral-Zettler6, Linda A. Amaral-Zettler7, E. Virginia Armbrust8, John M. Archibald9, John M. Archibald1, Arvind K. Bharti10, Callum J. Bell10, Bank Beszteri11, Kay D. Bidle12, Connor Cameron10, Lisa Campbell13, David A. Caron14, Rose Ann Cattolico8, Jackie L. Collier4, Kathryn J. Coyne15, Simon K. Davy16, Phillipe Deschamps17, Sonya T. Dyhrman18, Bente Edvardsen19, Ruth D. Gates20, Christopher J. Gobler4, Spencer J. Greenwood21, Stephanie Guida10, Jennifer L. Jacobi10, Kjetill S. Jakobsen19, Erick R. James2, Bethany D. Jenkins22, Uwe John11, Matthew D. Johnson23, Andrew R. Juhl18, Anja Kamp24, Anja Kamp25, Laura A. Katz26, Ronald P. Kiene27, Alexander Kudryavtsev28, Alexander Kudryavtsev29, Brian S. Leander2, Senjie Lin30, Connie Lovejoy31, Denis H. Lynn32, Denis H. Lynn2, Adrian Marchetti33, George B. McManus30, Aurora M. Nedelcu34, Susanne Menden-Deuer22, Cristina Miceli35, Thomas Mock36, Marina Montresor37, Mary Ann Moran38, Shauna A. Murray39, Govind Nadathur40, Satoshi Nagai, Peter B. Ngam10, Brian Palenik5, Jan Pawlowski28, Giulio Petroni41, Gwenael Piganeau42, Matthew C. Posewitz43, Karin Rengefors44, Giovanna Romano37, Mary E. Rumpho30, Tatiana A. Rynearson22, Kelly B. Schilling10, Declan C. Schroeder, Alastair G. B. Simpson9, Alastair G. B. Simpson1, Claudio H. Slamovits9, Claudio H. Slamovits1, David Roy Smith45, G. Jason Smith46, Sarah R. Smith5, Heidi M. Sosik23, Peter Stief25, Edward C. Theriot47, Scott N. Twary48, Pooja E. Umale10, Daniel Vaulot49, Boris Wawrik50, Glen L. Wheeler51, William H. Wilson52, Yan Xu53, Adriana Zingone37, Alexandra Z. Worden1, Alexandra Z. Worden3 
Canadian Institute for Advanced Research1, University of British Columbia2, Monterey Bay Aquarium Research Institute3, Stony Brook University4, University of California, San Diego5, Brown University6, Marine Biological Laboratory7, University of Washington8, Dalhousie University9, National Center for Genome Resources10, Alfred Wegener Institute for Polar and Marine Research11, Rutgers University12, Texas A&M University13, University of Southern California14, University of Delaware15, Victoria University of Wellington16, University of Paris-Sud17, Columbia University18, University of Oslo19, University of Hawaii at Manoa20, University of Prince Edward Island21, University of Rhode Island22, Woods Hole Oceanographic Institution23, Jacobs University Bremen24, Max Planck Society25, Smith College26, University of South Alabama27, University of Geneva28, Saint Petersburg State University29, University of Connecticut30, Laval University31, University of Guelph32, University of North Carolina at Chapel Hill33, University of New Brunswick34, University of Camerino35, University of East Anglia36, Stazione Zoologica Anton Dohrn37, University of Georgia38, University of Technology, Sydney39, University of Puerto Rico40, University of Pisa41, Centre national de la recherche scientifique42, Colorado School of Mines43, Lund University44, University of Western Ontario45, California State University46, University of Texas at Austin47, Los Alamos National Laboratory48, Pierre-and-Marie-Curie University49, University of Oklahoma50, Plymouth Marine Laboratory51, Bigelow Laboratory For Ocean Sciences52, Princeton University53
TL;DR: In this paper, the authors describe a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans and their biology, evolution, and ecology.
Abstract: Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans.

852 citations