scispace - formally typeset
Search or ask a question
Author

Alessandra Stacchiotti

Bio: Alessandra Stacchiotti is an academic researcher from University of Brescia. The author has contributed to research in topics: Melatonin & Kidney. The author has an hindex of 25, co-authored 72 publications receiving 6315 citations. Previous affiliations of Alessandra Stacchiotti include University of Milan & University of Catania.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: In NRK-52E cell line the stress response is an early and metal-induced event that correlates well with the direct oxidative damage induced by mercury, and different chaperones are involved in the specific nephrotoxic mechanism of these environmental pollutants and work together for cell survival.

102 citations

Journal ArticleDOI
TL;DR: It is hypothesised that chronic Al administration is responsible for oxidative cell damage that interferes with ER functions inducing Abeta accumulation and neurodegenerative damage.
Abstract: Aluminium (Al) is a neurotoxic metal and Al exposure may be a factor in the aetiology of various neurodegenerative diseases such as Alzheimer's disease (AD). The major pathohistological findings in the AD brain are the presence of neuritic plaques containing beta-amyloid (Abeta) which may interfere with neuronal communication. Moreover, it has been observed that GRP78, a stress-response protein induced by conditions that adversely affect endoplasmic reticulum (ER) function, is reduced in the brain of AD patients. In this study, we investigated the correlation between the expression of Abeta and GRP78 in the brain cortex of mice chronically treated with aluminium sulphate. Chronic exposure over 12 months to aluminium sulphate in drinking water resulted in deposition of Abeta similar to that seen in congophilic amyloid angiopathy (CAA) in humans and a reduction in neuronal expression of GRP78 similar to what has previously been observed in Alzheimer's disease. So, we hypothesise that chronic Al administration is responsible for oxidative cell damage that interferes with ER functions inducing Abeta accumulation and neurodegenerative damage.

96 citations

Journal ArticleDOI
TL;DR: D-4F administration increased antioxidant capacity, as reflected by the decrease in oxidized protein and oxidized LDL, and enhanced EPC function and/or repair, as evidenced by the increase in EPC endothelial nitric-oxide synthase (eNOS) and prevention of vascular TM and CD31+ loss.
Abstract: Apolipoprotein A1 mimetic peptide (D-4F), synthesized from D-amino acid, enhances the ability of high-density lipoprotein to protect low-density lipoprotein (LDL) against oxidation in atherosclerotic disease. Using a rat model of type I diabetes, we investigated whether chronic use of D-4F would lead to up-regulation of heme oxygenase (HO)-1, endothelial cell marker (CD31 + ), and thrombomodulin (TM) expression and increase the number of endothelial progenitor cells (EPCs). Sprague-Dawley rats were rendered diabetic with streptozotocin (STZ) and either D-4F or vehicle was administered, by i.p. injection, daily for 6 weeks (100 μg/100 g b.wt.). HO activity was measured in liver, kidney, heart, and aorta. After 6 weeks of D-4F treatment, HO activity significantly increased in the heart and aorta by 29 and 31% ( p p + expression. D-4F administration increased antioxidant capacity, as reflected by the decrease in oxidized protein and oxidized LDL, and enhanced EPC function and/or repair, as evidenced by the increase in EPC endothelial nitric-oxide synthase (eNOS) and prevention of vascular TM and CD31 + loss. In conclusion, HO-1 and eNOS are relevant targets for D-4F and may contribute to the D-4F-mediated increase in TM and CD31 + , the antioxidant and anti-inflammatory properties, and confers robust vascular protection in this animal model of type 1 diabetes.

90 citations

Journal ArticleDOI
TL;DR: It is suggested that the imbalance between production of free oxygen radicals and antioxidant defence systems, due to CsA administration, is a mechanism responsible for oxidative stress and it is shown that Mel plays a protective action againstCsA-induced oxidative stress, as supported by biochemical and immunohistochemical results.

75 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Abstract: Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.

3,340 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Abstract: In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

2,238 citations

Journal ArticleDOI
TL;DR: A way forward is suggested for the effective targeting of autophagy by understanding the context-dependent roles of autophile and by capitalizing on modern approaches to clinical trial design.
Abstract: Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.

1,606 citations

Journal ArticleDOI
TL;DR: The authors critically review the current evidence relating systemic blood levels of cyclosporine and tacrolimus to calcineurin inhibitor nephrotoxicity, and summarize the data suggesting that local exposure to cycloporine or tacolimus could be more important than systemic exposure.
Abstract: The use of the calcineurin inhibitors cyclosporine and tacrolimus led to major advances in the field of transplantation, with excellent short-term outcome. However, the chronic nephrotoxicity of these drugs is the Achilles' heel of current immunosuppressive regimens. In this review, the authors summarize the clinical features and histologic appearance of both acute and chronic calcineurin inhibitor nephrotoxicity in renal and nonrenal transplantation, together with the pitfalls in its diagnosis. The authors also review the available literature on the physiologic and molecular mechanisms underlying acute and chronic calcineurin inhibitor nephrotoxicity, and demonstrate that its development is related to both reversible alterations and irreversible damage to all compartments of the kidneys, including glomeruli, arterioles, and tubulo-interstitium. The main question--whether nephrotoxicity is secondary to the actions of cyclosporine and tacrolimus on the calcineurin-NFAT pathway--remains largely unanswered. The authors critically review the current evidence relating systemic blood levels of cyclosporine and tacrolimus to calcineurin inhibitor nephrotoxicity, and summarize the data suggesting that local exposure to cyclosporine or tacrolimus could be more important than systemic exposure. Finally, other local susceptibility factors for calcineurin inhibitor nephrotoxicity are reviewed, including variability in P-glycoprotein and CYP3A4/5 expression or activity, older kidney age, salt depletion, the use of nonsteroidal anti-inflammatory drugs, and genetic polymorphisms in genes like TGF-beta and ACE. Better insight into the mechanisms underlying calcineurin inhibitor nephrotoxicity might pave the way toward more targeted therapy or prevention of calcineurin inhibitor nephrotoxicity.

1,228 citations