scispace - formally typeset
Search or ask a question
Author

Alessandro Englaro

Bio: Alessandro Englaro is an academic researcher from University of Padua. The author has contributed to research in topics: Aerodynamic force & Computational fluid dynamics. The author has an hindex of 2, co-authored 2 publications receiving 342 citations.

Papers
More filters
Journal ArticleDOI
01 Aug 2011-Energy
TL;DR: In this article, a CFD model for the evaluation of energy performance and aerodynamic forces acting on a straight-bladed vertical-axis Darrieus wind turbine is presented. But the model is not suitable for the application of wind turbines to the power grid.

409 citations


Cited by
More filters
01 Jan 2002
TL;DR: In this article, the aerodynamic design and performance of VAWTs based on the Darrieus concept is discussed, as well as future trends in design and the inherent socioeconomic and environmental friendly aspects of wind energy as an alternate source of energy.
Abstract: Wind energy is the fastest growing alternate source of energy in the world since its purely economic potential is complemented by its great positive environmental impact. The wind turbine, whether it may be a Horizontal-Axis Wind Turbine (HAWT) or a Vertical-Axis Wind Turbine (VAWT), offers a practical way to convert the wind energy into electrical or mechanical energy. Although this book focuses on the aerodynamic design and performance of VAWTs based on the Darrieus concept, it also discusses the comparison between HAWTs and VAWTs, future trends in design and the inherent socio-economic and environmental friendly aspects of wind energy as an alternate source of energy.

549 citations

Journal ArticleDOI
TL;DR: This review summarizes recent experimental, computational, and theoretical research efforts that have contributed to improving the understanding and ability to predict the interactions of ABL flow with wind turbines and wind farms.
Abstract: Wind energy, together with other renewable energy sources, are expected to grow substantially in the coming decades and play a key role in mitigating climate change and achieving energy sustainability. One of the main challenges in optimizing the design, operation, control, and grid integration of wind farms is the prediction of their performance, owing to the complex multiscale two-way interactions between wind farms and the turbulent atmospheric boundary layer (ABL). From a fluid mechanical perspective, these interactions are complicated by the high Reynolds number of the ABL flow, its inherent unsteadiness due to the diurnal cycle and synoptic-forcing variability, the ubiquitous nature of thermal effects, and the heterogeneity of the terrain. Particularly important is the effect of ABL turbulence on wind-turbine wake flows and their superposition, as they are responsible for considerable turbine power losses and fatigue loads in wind farms. These flow interactions affect, in turn, the structure of the ABL and the turbulent fluxes of momentum and scalars. This review summarizes recent experimental, computational, and theoretical research efforts that have contributed to improving our understanding and ability to predict the interactions of ABL flow with wind turbines and wind farms.

443 citations

Journal ArticleDOI
TL;DR: In this paper, the performance, blade design, control and manufacturing of horizontal axis and vertical axis wind turbines are reviewed based on experimental and numerical studies and lessons learnt from various studies/countries on actual installation of small wind turbines were presented.
Abstract: Meeting future world energy needs while addressing climatic changes has led to greater strain on conventional power sources. One of the viable sustainable energy sources is wind. But the installation large scale wind farms has a potential impact on the climatic conditions, hence a decentralized small scale wind turbines is a sustainable option. This paper presents review of on different types of small scale wind turbines i.e., horizontal axis and vertical axis wind turbines. The performance, blade design, control and manufacturing of horizontal axis wind turbines were reviewed. Vertical axis wind turbines were categorized based on experimental and numerical studies. Also, the positioning of wind turbines and aero-acoustic aspects were presented. Additionally, lessons learnt from various studies/countries on actual installation of small wind turbines were presented.

383 citations

Journal ArticleDOI
01 Nov 2012-Energy
TL;DR: In this article, the performance of the straight Darrieus turbine (H-rotor) was investigated for 20 different airfoils (Symmetric and Non-symmetric) by two-dimensional Computational Fluid Dynamics in order to maximize output torque coefficient and output power coefficient (efficiency).

286 citations

Journal ArticleDOI
TL;DR: In this article, an extended analysis is presented which has been carried out with the final aim of identifying the most effective simulation settings to ensure a reliable fully-unsteady, two-dimensional simulation of an H-type Darrieus turbine.

269 citations