scispace - formally typeset
Search or ask a question
Author

Alessandro Paoli

Bio: Alessandro Paoli is an academic researcher from University of Pisa. The author has contributed to research in topics: Structured light & Vibration. The author has an hindex of 17, co-authored 67 publications receiving 668 citations.


Papers
More filters
Journal ArticleDOI
05 Feb 2013-Sensors
TL;DR: D dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures, based on integrating Cone-Beam Computed Tomography and surface structured light scanning.
Abstract: In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.

67 citations

Journal ArticleDOI
TL;DR: A computational design and engineering methodology has been developed to reconstruct anatomical tissues, to model parametric aligner shapes, to simulate orthodontic movements, and to enhance the aligner design within a 3-dimensional digital framework.
Abstract: Transparent and removable aligners represent an effective solution to correct various orthodontic malocclusions through minimally invasive procedures. An aligner-based treatment requires patients to sequentially wear dentition-mating shells obtained by thermoforming polymeric disks on reference dental models. An aligner is shaped introducing a geometrical mismatch with respect to the actual tooth positions to induce a loading system, which moves the target teeth toward the correct positions. The common practice is based on selecting the aligner features (material, thickness, and auxiliary elements) by only considering clinician's subjective assessments. In this article, a computational design and engineering methodology has been developed to reconstruct anatomical tissues, to model parametric aligner shapes, to simulate orthodontic movements, and to enhance the aligner design. The proposed approach integrates computer-aided technologies, from tomographic imaging to optical scanning, from parametric modeling to finite element analyses, within a 3-dimensional digital framework. The anatomical modeling provides anatomies, including teeth (roots and crowns), jaw bones, and periodontal ligaments, which are the references for the down streaming parametric aligner shaping. The biomechanical interactions between anatomical models and aligner geometries are virtually reproduced using a finite element analysis software. The methodology allows numerical simulations of patient-specific conditions and the comparative analyses of different aligner configurations. In this article, the digital framework has been used to study the influence of various auxiliary elements on the loading system delivered to a maxillary and a mandibular central incisor during an orthodontic tipping movement. Numerical simulations have shown a high dependency of the orthodontic tooth movement on the auxiliary element configuration, which should then be accurately selected to maximize the aligner's effectiveness.

53 citations

Journal ArticleDOI
TL;DR: In this paper, a methodology based on the integration of a robotic system with an optical scanner, providing accurate non-contact 3D full field measurements of the hull surface is presented.
Abstract: In the shipbuilding industry, the manufacturing of large yacht hulls is a complex process. Metal hulls are traditionally manufactured by welding pre fabricated large steel panels to form the external superstructure. A surface finishing process is then carried out in order to obtain a final target surface having a smooth curvature. The methodologies manly rely on manual processes based on the measurement of the as built hull shape through simple testing instrumentation. Well-experienced workers are required, and a great amount of time is usually wasted, thus affecting the overall shipyard competitiveness. This paper introduces a methodology for automating the measurement process of as built hull yacht shapes. The methodology, which is based on the integration of a robotic system with an optical scanner, provides accurate non contact 3D full field measurements of the hull surface. The placement of the robotic system around the hull shape is determined by a laser total station thus allowing the automatic multi view data registration into a common reference frame. The proposed approach represents the basis for the automation of the whole surface finishing process of large yacht hulls. In this paper, the methodology has been tested by measuring a large broadside area of a 59m hull assembled within a shipyard.

52 citations

Journal ArticleDOI
TL;DR: A novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field through custom-made stereo-lithographic surgical guides based on integrating 3D data of anatomical and preoperative models obtained by both CT and optical scanning processes.
Abstract: A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes. A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology.

44 citations

Journal ArticleDOI
01 Mar 2012
TL;DR: A methodology to automatically measure three-dimensional coordinates of fiducial markers to be used as references to align point clouds obtained by an active stereo vision system based on structured light projection is described.
Abstract: In recent years, various methodologies of shape reconstruction have been proposed with the aim at creating Computer-Aided Design models by digitising physical objects using optical sensors. Generally, the acquisition of 3D geometrical data includes crucial tasks, such as planning scanning strategies and aligning different point clouds by multiple view approaches, which differ for user’s interaction and hardware cost. This paper describes a methodology to automatically measure three-dimensional coordinates of fiducial markers to be used as references to align point clouds obtained by an active stereo vision system based on structured light projection. Intensity-based algorithms and stereo vision principles are combined to detect passive fiducial markers localised in a scene. 3D markers are uniquely recognised on the basis of geometrical similarities. The correlation between fiducial markers and point clouds allows the digital creation of complete object surfaces. The technology has been validated by experimental tests based on nominal benchmarks and reconstructions of target objects with complex shapes.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of 3D Slicer is presented as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications and the utility of the platform in the scope of QIN is illustrated.

4,786 citations

01 Aug 2010
TL;DR: Stereolithography is a solid freeform technique (SFF) that was introduced in the late 1980s as discussed by the authors, which has the highest fabrication accuracy and an increasing number of materials that can be processed is becoming available.
Abstract: Stereolithography is a solid freeform technique (SFF) that was introduced in the late 1980s Although many other techniques have been developed since then, stereolithography remains one of the most powerful and versatile of all SFF techniques It has the highest fabrication accuracy and an increasing number of materials that can be processed is becoming available In this paper we discuss the characteristic features of the stereolithography technique and compare it to other SFF techniques The biomedical applications of stereolithography are reviewed, as well as the biodegradable resin materials that have been developed for use with stereolithography Finally, an overview of the application of stereolithography in preparing porous structures for tissue engineering is given

319 citations

Journal ArticleDOI
TL;DR: This paper briefly describes various types of AM technologies with their accuracy, pros and cons along with different dental materials, and discusses various benefits of AM in dentistry and steps used to create 3D printed dental model using this technology.
Abstract: Objective To study the current status and applications of additive manufacturing (AM) in dentistry along with various technologies, benefits and future scope. Methods A significant number of relevant research papers on the additive manufacturing application in dentistry are identified through Scopus and studied using bibliometric analysis that shows an increasing trend of research in this field. This paper briefly describes various types of AM technologies with their accuracy, pros and cons along with different dental materials. Paper also discusses various benefits of AM in dentistry and steps used to create 3D printed dental model using this technology. Further, ten major AM applications in dentistry are identified along with primary references and objectives. Results Additive manufacturing is an innovative technique moving towards the customised production of dental implants and other dental tools using computer-aided design (CAD) data. This technology is used to manufacture elaborate dental crowns, bridges, orthodontic braces and can also various other models, devices and instruments with lesser time and cost. With the help of this disruptive innovation, dental implants are fabricated accurately as per patient data captured by the dental 3D scanner. The application of this technology is also being explored for the precise manufacturing of removal prosthetics, aligners, surgical templates for implants and produce models that for the planning of treatment and preoperative positioning of the jaws.

155 citations