scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the first intrinsic hyperpolarizability β was determined for 10 new thiophene-based charge transfer (CT) chromophores using the hyper-Rayleigh scattering (HRS) technique at the wavelengths of 1064 and 1907 nm.

22 citations

Journal ArticleDOI
TL;DR: In this paper , a series of newly designed chlorinated small-molecule acceptors (PSMAs) originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight, favorable intermolecular interaction, and improved physicochemical properties.
Abstract: The recently reported efficient polymerized small-molecule acceptors (PSMAs) usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethylidene)indan-1-one (IC) end group or its derivatives, leading to low molecular weight, and thus reduce active layer mechanical properties. Herein, a series of newly designed chlorinated PSMAs originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight, favorable intermolecular interaction, and improved physicochemical properties. Compared with regioregular PY2Se-Cl-o and PY2Se-Cl-m, regiorandom PY2Se-Cl-ran has a similar absorption profile, moderate lowest unoccupied molecular orbital level, and favorable intermolecular packing and crystallization properties. Moreover, the binary PM6:PY2Se-Cl-ran blend achieves better ductility with a crack-onset strain of 17.5% and improved power conversion efficiency (PCE) of 16.23% in all-polymer solar cells (all-PSCs) due to the higher molecular weight of PY2Se-Cl-ran and optimized blend morphology, while the ternary PM6:J71:PY2Se-Cl-ran blend offers an impressive PCE approaching 17% and excellent device stability, which are all crucial for potential practical applications of all-PSCs in wearable electronics. To date, the efficiency of 16.86% is the highest value reported for the regiorandom PSMAs-based all-PSCs and is also one of the best values reported for the all-PSCs. Our work provides a new perspective to develop efficient all-PSCs, with all high active layer ductility, impressive PCE, and excellent device stability, towards practical applications.

22 citations

Journal ArticleDOI
TL;DR: This is the first reported application of a hydrophobic 2,1,3-benzothiadiazole-containing 2PA red emitter delivered into the cytoplasm of cells for bioimaging and toxicity assessment.
Abstract: A hydrophobic two-photon absorbing (2PA) red emitter (R) was successfully incorporated into micelles formed from two block copolymers, poly(e-caprolactone)-block-poly(ethylene glycol)s, for imaging and toxicity studies. In micelles, the chromophore R exhibits a 2PA cross-section of 400 GM (1 GM = 1 × 10−50 cm4 s photon−1 molecule−1) at 820 nm, which is among the highest values reported for red 2PA emitters. The micelles with a cationic amino moiety-containing poly(ethylene glycol) corona showed an enhancement of cell internalization and delivered the dye into the cytoplasmic regions of the mouse macrophage RAW 264.7 cells. In comparison, the dye in micelles with neutral poly(ethylene glycol) as corona could not be delivered into the cells. Cytotoxicity of the micelle-R constructs was studied using a 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. More than 90% of the cells were viable after they were stained with the dye-containing micelles at different concentrations (dye concentrations of 2–6 μM and polymer concentrations of 0.05–0.15 mg/mL) for 16 h. This is the first reported application of a hydrophobic 2,1,3-benzothiadiazole-containing 2PA red emitter delivered into the cytoplasm of cells for bioimaging and toxicity assessment. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010

22 citations

Journal ArticleDOI
TL;DR: In this article, solution-processed chalcopyrite and perovskite devices of various bandgaps are combined in four and two-terminal mechanically-stacked tandem architectures.
Abstract: Solution-processed chalcopyrite and perovskite devices of various bandgaps are combined in four- and two-terminal mechanically-stacked tandem architectures. The excellent low-light performance of Cu(In,Ga)(S,Se)2 and low-bandgap CuIn(S,Se)2 cells and the high efficiency of novel NIR-transparent inverted perovskite cells with C60/bis-C60/ITO as electron transport layers, enabled stabilized two- and four-terminal tandem efficiencies up to 18.5% and 18.8%, respectively, which represent a new record for tandem devices with solution-processed chalcopyrite and perovskite absorbers.

22 citations

Journal ArticleDOI
TL;DR: In this paper, a Fabry-Perot etalon using an electro-optic (EO) polymer material as the nonlinear medium is presented, and two electrodes used to apply voltage across the EO polymer include an indium tin oxide electrode outside the etalon cavity and a low-absorption indium oxide electrode inside the cavity.
Abstract: The authors present a Fabry-Perot etalon using an electro-optic (EO) polymer material as the nonlinear medium The two electrodes used to apply voltage across the EO polymer include an indium tin oxide electrode outside the etalon cavity and a low-absorption indium oxide electrode inside the etalon cavity High finesse (∼234) and a low insertion loss (∼4dB) have been obtained An isolation ratio of 10dB and ∼10% modulation depth at 200kHz with 5V applied voltage have been achieved These results indicate that EO polymer etalons are promising as spatial light modulators for information technology

22 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations