scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The RF photonic reception and downconversion of vector modulated RF signals using a millimeter-wave coupled electrooptic phase modulator with in-plane slotted patch antennas based on SEO125 nonlinear polymer is reported.
Abstract: We report the RF photonic reception and downconversion of vector modulated RF signals using a millimeter-wave coupled electrooptic phase modulator with in-plane slotted patch antennas based on SEO125 nonlinear polymer. We demonstrate experimental results with QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-QAM millimeter-wave signals centered at 36 GHz. After downconversion to intermediate frequencies between 0.5 GHz and 2 GHz, the vector encoded signals are demodulated using an electrical signal analyzer and found to have measured error vector magnitudes below 8%. Design, simulation, fabrication, and experimental results are presented and discussed.

14 citations

Journal ArticleDOI
TL;DR: In this article, a panchromatic quasi-solid state dye-sensitized solar cell is proposed to enhance the performance of the solar cells by Forster resonance energy transfer.

14 citations

Proceedings ArticleDOI
09 Jun 2013
TL;DR: In this article, a band engineered slot photonic crystal waveguide refilled with electro-optic (EO) polymer is demonstrated, and the combined effects of slow light and high performance EO polymer makes possible effective in-device r 33 of 1012pm/V and V π ×L of 0.345Vmm.
Abstract: We demonstrate a band engineered slot photonic crystal waveguide refilled with electro-optic (EO) polymer. The combined effects of slow-light and high performance EO polymer makes possible effective in-device r 33 of 1012pm/V and V π ×L of 0.345Vmm.

14 citations

Journal ArticleDOI
01 Jan 2006
TL;DR: In this paper, the authors review the recent progress on interface engineering between polymer and electrodes to optimize charge injection, transport, and recombination in PLEDs, as well as on material engineering to tune the emission color, electron affinity, and charge mobility.
Abstract: Polymer light‐emitting diodes (PLEDs) have great potential to compete with LCD displays that are currently used for computer and television screens. The efficiency and stability of PLEDs still need to be improved in order to fully realize the advantages of low cost and ease of fabrication provided by organic materials. Our effort in improving the PLED's performance have been focused on two parallel approaches: 1) Modify the interface between polymer and the charge‐injection electrodes for more efficient device structures; 2) Enhance the efficiency of PLEDs through the development of new conjugated materials with balanced charge‐transporting properties. In this paper, we review our recent progress on the interface engineering between polymer and electrodes to optimize charge‐injection, ‐transport, and ‐recombination in PLEDs, as well as on the material engineering to tune the emission color, electron affinity, and charge mobility.

14 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations