scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Proceedings ArticleDOI
TL;DR: In this paper, the material processing, waveguide fabrication, and electro-optic properties of hybrid sol-gel doped with a large hyperpolarizability chromophore were reported.
Abstract: This paper reports the material processing, waveguide fabrication, and electro-optic properties of hybrid sol-gel doped with a large hyperpolarizability chromophore. High electro-optic coefficient and stability are demonstrated, and electro-optic intensity modulation is presented.

4 citations

Proceedings ArticleDOI
25 Feb 1993
TL;DR: In this paper, second order nonlinear optically active heterocyclic compounds with extended length-scale were synthesized and their nonlinear optical properties were characterized by EFISH measurements.
Abstract: Second order nonlinear optically active heterocyclic compounds with extended length-scale were synthesized and their nonlinear optical properties were characterized by EFISH measurements. The results from the study of two series of heterocyclic compounds with different electron acceptors reveal a power-law dependence of (Beta) (mu) on length, and in both series similar power-law exponent of approximately 2 are observed. Results of a theoretical model calculation are in qualitative agreement with the experimental results.

3 citations

Journal ArticleDOI
TL;DR: In this article , an ionic liquid, methylammonium formate (MAFm), based dual-interface engineering approach is developed to modify the bottom and top interfaces of wide-bandgap CsPbI2Br films.
Abstract: Monolithic perovskite/organic tandem solar cells (POTSCs) have significant advantages in next‐generation flexible photovoltaics, owing to their capability to overcome the Shockley–Queisser limit and facile device integration. However, the compromised sub‐cells performance challenges the fabrication of high‐efficiency POTSCs. Especially for all‐inorganic wide‐bandgap perovskite front sub‐cells (AIWPSCs) based n‐i‐p structured POTSCs (AIPOTSCs), for which the power conversion efficiency (PCE) is much lower than organic–inorganic mixed‐halide wide‐bandgap perovskite based POTSCs. Herein, an ionic liquid, methylammonium formate (MAFm), based dual‐interface engineering approach is developed to modify the bottom and top interfaces of wide‐bandgap CsPbI2Br films. In particular, the Fm− group of MAFm can effectively passivate the interface defects, and the top interface modification can facilitate the formation of uniform perovskite films with enlarged grain size, thereby mitigating the defects and perovskite grain boundaries induced carrier recombination. As a result, CsPbI2Br‐based AIWPSCs with a high PCE of 17.0% and open‐circuit voltage (VOC) of 1.347 V are achieved. By integrating these dual‐interface engineered CsPbI2Br‐based front sub‐cells with the narrow‐bandgap PM6:CH1007‐based rear sub‐cells, a record PCE of 23.21% is obtained for AIPOTSCs, illustrating the potential of AIPOTSCs for achieving high‐efficiency tandem solar cells.

3 citations

Proceedings ArticleDOI
TL;DR: A low loss and high sensitivity X-band RF sensor based on electro-optic polymer filled silicon slot photonic crystal waveguides (PCW) and bowtie antenna is proposed in this paper.
Abstract: A low loss and high sensitivity X-band RF sensor based on electro-optic (EO) polymer filled silicon slot photonic crystal waveguides (PCW) and bowtie antenna is proposed. By taking advantage of the slow light enhancementt in the PCW(>20X), large EO coefficient of the EO polymer(r 33 >200pm/V), as well as significant electric field enhancement of bowtie antenna on silicon dioxide substrate(>10000X), we can realize a large in-device EO coefficient over 1000pm/V so as to realize a high performance RF wave sensor. In addition, on-chip Mach-Zender interferometer (MZI) layout working under push-pull configuration is adopted to further increase the sensitivity of the sensor. Furthermore, inverse taper couplers and slotted photonic crystal waveguides are carefully designed and discussed in this paper to reduce the insertion loss of the device so as to increase the device signal-to-noise ratio. The minimum detectable electromagnetic power density is pushed down to 2.05 mW/m 2 , corresponding to a minimum sensing electric field of 0.61 V/m. This photonic RF sensor has several important advantages over conventional electronics RF sensors based on electrical scheme including high data throughput, compact in size, and great immunity to electromagnetic interference (EMI).

3 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations