scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Proceedings ArticleDOI
03 Mar 2003
Abstract: Polyfluorenes are a class of very efficient conjugated polymers used in the development of LEDs that exhibit very high hole mobility. In order to balance the charge transport and enhance quantum efficiency of the LEDs, fluorene-based copolymers were synthesized based on the statistic copolymerization between fluorene and 2,5-dicyanobezene. By attaching two electron-withdrawing cyano groups onto the phenylene ring, both the electron affinity and the electron conduction of these copolymers are greatly enhanced comparing to the fluorene homopolymer. LED devices using the cyano-containing fluorene copolymers show very bright emission and low turn-on voltages. The emission color of these polymers could be also tuned by exciplex formation between the polymers and amine-containing hole transporting materials.

1 citations

Proceedings ArticleDOI
TL;DR: In this paper, photonic crystal waveguides without cavities are fabricated by spatially resolved bleaching of a chromophore doped polymer cladding, which can achieve very small effective lattice constant shifts of 0.2 nm.
Abstract: We demonstrate a novel concept for the fabrication of high Q photonic crystal heterostructure cavities First, photonic crystal waveguides without cavities are fabricated The cavities are defined in a later fabrication step by spatially resolved bleaching of a chromophore doped polymer cladding Bleaching of polymer films either by UV light or by electron beam illumination is well known to reduce the refractive index of the film The reduction of the cladding refractive index leads to a reduction of the effective lattice constant of the photonic crystal waveguide The maximum refractive index change was found to be 6•10 -2 which corresponds to the effective lattice constant change of 122 nm With this approach it is also possible to achieve very small effective lattice constant shifts of 002 nm which is not possible with state of the art lithography Being able to precisely define the effective lattice constant at every point of the photonic crystal waveguide we are able to impose cavity mode profiles which closely resemble a Gaussian envelope This leads to a dramatic increase of the Q-factor In simulations we have obtained Q-factors as high as 30•10 6 for a vertically symmetric polymer cladding First results for non-vertically symmetric structures are presented

1 citations

Posted Content
TL;DR: In this article, the authors present a platform for electro-optic photon conversion based on silicon-organic hybrid photonics, which combines high quality factor microwave and optical resonators with an electrooptic polymer cladding to perform microwave-to-optical photon conversion from 6.7 GHz to 193 THz.
Abstract: Low-loss fiber optic links have the potential to connect superconducting quantum processors together over long distances to form large scale quantum networks. A key component of these future networks is a quantum transducer that coherently and bidirectionally converts photons from microwave frequencies to optical frequencies. We present a platform for electro-optic photon conversion based on silicon-organic hybrid photonics. Our device combines high quality factor microwave and optical resonators with an electro-optic polymer cladding to perform microwave-to-optical photon conversion from 6.7 GHz to 193 THz (1558 nm). The device achieves an electro-optic coupling rate of 330 Hz in a millikelvin dilution refrigerator environment. We use an optical heterodyne measurement technique to demonstrate the single-sideband nature of the conversion with a selectivity of approximately 10 dB. We analyze the effects of stray light in our device and suggest ways in which this can be mitigated. Finally, we present initial results on high-impedance spiral resonators designed to increase the electro-optic coupling.

1 citations

Proceedings ArticleDOI
01 May 2011
TL;DR: In this paper, an E-O polymer infiltrated silicon photonic crystal slot waveguide modulator was proposed to achieve an effective r 33 of 735pm/V and V π L of only 0.44Vmm.
Abstract: We demonstrate an E-O polymer infiltrated silicon photonic crystal slot waveguide modulator. Enhanced by improved poling efficiency and slow light effect, we achieve an ultra-high effective r 33 of 735pm/V and V π L of only 0.44Vmm.

1 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations