scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the hole injection from poly(BTPD-Si-PFCB) into the "super yellow" derivative of poly(phenylene vinylene) and into several blue-emitting polymers is comparable to or better than that obtained with poly(ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSSA).
Abstract: Enhanced luminance (L) and luminous efficiency (LE) of polymer light-emitting diodes (PLEDs) is demonstrated using poly(bis(tetraphenyldiamino)biphenyl-perfluorocyclobutane), poly(BTPD-Si-PFCB), as the hole injection layer. The monomer is cast directly onto the indium-tin-oxide anode and thermally polymerized in situ. Hole injection from poly(BTPD-Si-PFCB) into the “super yellow” derivative of poly(phenylene vinylene) and into several blue-emitting polymers is comparable to or better than that from poly(ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSSA). With poly(BTPD-Si-PFCB) as the hole injecting layer into “super yellow,” the performance is identical to that obtained with PEDOT:PSSA (LE≈8 cd/A with little fall-off, even at L>104 cd/m2).

116 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of molecular geometry of the donor polymers and the perylene diimide dimers (di-PDIs) on the bulk heterojunction (BHJ) morphology in the nonfullerene polymer solar cells (PSCs) was investigated.
Abstract: In this study, we investigate the influence of molecular geometry of the donor polymers and the perylene diimide dimers (di-PDIs) on the bulk heterojunction (BHJ) morphology in the nonfullerene polymer solar cells (PSCs). The results reveal that the pseudo 2D conjugated poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PTB7-Th) has better miscibility with both bay-linked di-PDI (B-di-PDI) and hydrazine-linked di-PDI (H-di-PDI) compared to its 1D analog, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), to facilitate more efficient exciton dissociation in the BHJ films. However, the face-on oriented - stacking of PTB7-Th is severely disrupted by the B-di-PDI due to its more flexible structure. On the contrary, the face-on oriented - stacking is only slightly disrupted by the H-di-PDI, which has a more rigid structure to provide suitable percolation pathways for charge transport. As a result, a very high power conversion efficiency (PCE) of 6.41% is achieved in the PTB7-Th:H-di-PDI derived device. This study shows that it is critical to pair suitable polymer donor and di-PDI-based acceptor to obtain proper BHJ morphology for achieving high PCE in the nonfullerene PSCs.

114 citations

Journal ArticleDOI
TL;DR: In this paper, a spin-coated thin layer of graphene oxide (GO) on top of the organic active layer was applied to inverted bulk-heterojunction (BHJ) polymer solar cells.
Abstract: A simple method has been developed to modify the anode interface of inverted bulk-heterojunction (BHJ) polymer solar cells by spin-coating a thin layer of graphene oxide (GO) on top of the organic active layer. The device with GO exhibited a remarkable improvement in power conversion efficiency compared to devices without any interfacial layer, indicating that GO can effectively modify the BHJ/metal anode interface to facilitate efficient hole collection. The dependence of the device performance on the GO layer thickness was also investigated showing an optimum performance from a GO thickness of ∼2–3 nm.

114 citations

Journal ArticleDOI
TL;DR: This study provides one of the first nonfullerene small-molecule-based ETMs for high-performance p-i-n PVSCs for perovskite solar cells with superior power conversion efficiency.
Abstract: Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron-transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6 % with negligible hysteresis. This study provides one of the first nonfullerene small-molecule-based ETMs for high-performance p-i-n PVSCs.

114 citations

Journal ArticleDOI
TL;DR: The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices as discussed by the authors .
Abstract: Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.

113 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations