scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the development of tailored organic electric-optic (OEO) materials and their applications in hybrid device systems has been reviewed, which includes the optical and/or electrical components that form intimate contact with OEO materials such as metal oxide barrier layers, solution processable passive waveguides, silicon nanoslots, and photonic CMOS chips.
Abstract: Recent development of tailored organic electric-optic (OEO) materials and their applications in hybrid device systems has been reviewed. Hybrid systems encompass the optical and/or electrical components that form intimate contact with OEO materials, such as metal oxide barrier layers, solution processable passive waveguides, silicon nanoslots, and photonic CMOS chips, etc. These systems offer unique advantages combining excellent properties and simple processing for advanced photonic device platforms. Examples include the demonstration of low-Vπ and low-loss EO modulators in hybrid polymer sol−gel waveguides, CMOS-compatible hybrid polymer/silicon slotted waveguides, and EO polymer-clad silicon nitride ring resonator modulators. This review also provides a future prospect for the development of OEO materials and their hybrid systems.

113 citations

Journal ArticleDOI
TL;DR: This work presents a strategy for suppressing the open-circuit voltage (Voc) loss of perovskite solar cells by incorporating large guanidinium cations (Gua+) into a perovSkite lattice, leading to a significantly improved Voc of 1.19 V and an impressive power conversion efficiency of >21%.

112 citations

Journal ArticleDOI
TL;DR: A Pb-S bonding approach is developed to synthesize water-resistant perovskite@silica nanodots that are capable of emitting and lasing in aqueous environments for long periods.
Abstract: Owing to their large absorption cross-sections and high photoluminescence quantum yields, lead halide perovskite quantum dots (PQDs) are regarded as a promising candidate for various optoelectronics applications. However, easy degradation of PQDs in water and in a humid environment is a critical hindrance for applications. Here we develop a Pb-S bonding approach to synthesize water-resistant perovskite@silica nanodots keeping their emission in water for over six weeks. A two-photon whispering-gallery mode laser device made of these ultra-stable nanodots retain 80% of its initial emission quantum yield when immersed in water for 13 h, and a two-photon random laser based on the perovskite@silica nanodots powder could still operate after the nanodots were dispersed in water for up to 15 days. Our synthetic approach opens up an entirely new avenue for utilizing PQDs in aqueous environment, which will significantly broaden their applications not only in optoelectronics but also in bioimaging and biosensing. Lead halide perovskite quantum dots (PQDs) promise applications in optoelectronics but are limited by sensitivity to wet environments. Here the authors develop a Pb-S bonding approach to synthesize PQDs@silica nanodots that are capable of emitting and lasing in aqueous environments for long periods.

111 citations

Journal ArticleDOI
TL;DR: In this paper, a series of hole-transporting materials (HTMs) bearing thermally cross-linkable styryl groups have been synthesized and characterized; these HTMs could be in situ cross-linked under mild thermal polymerization without any initiator.
Abstract: A series of novel hole-transporting materials (HTMs) bearing thermally cross-linkable styryl groups have been synthesized and characterized. These HTMs could be in situ cross-linked under mild thermal polymerization without any initiator. The cross-linking temperatures (150–180 °C) for these HTMs are substantially lower than that typically used for curing perfluorocyclobutane (PFCB)-based HTMs (230 °C). After cross-linking, the resultant HTMs form robust, smooth, and solvent-resistant networks, which enables the subsequent spin-coating of emissive layer (EML). The HTMs based on an ether linkage connecting triarylamine dimers exhibited better hole-transporting ability compared to their corresponding monotriarylamine compounds due to higher content and closer distance of the hole-transporting units. Most importantly, the milder cross-linking condition for these HTMs allows the commonly used conducting polymer, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), to be incorporated as the b...

111 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations