scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: Fluorinated n-type conjugated polymers are used as efficient electron acceptor to demonstrate high-performance all-polymer solar cells to result in enhanced photocurrent and suppressed charge recombination.
Abstract: Fluorinated n-type conjugated polymers are used as efficient electron acceptor to demonstrate high-performance all-polymer solar cells. The exciton generation, dissociation, and charge-transporting properties of blend films are improved by using these fluorinated n-type polymers to result in enhanced photocurrent and suppressed charge recombination.

411 citations

Journal ArticleDOI
TL;DR: In this paper, the role of intermolecular electrostatic interactions in inhibiting the efficient translation of molecular optical nonlinearity to macroscopic electro-optic activity has been investigated.
Abstract: Recent advances in polymeric electro-optic materials and device fabrication techniques have significantly increased the potential for incorporation of these materials and devices into modern high bandwidth (fiber and wireless) telecommunication, information processing, and radar systems Charge transfer π-electron chromophores characterized by molecular first hyperpolarizability (second order optical non-linearity) values approaching 3000×10 –30 esu have been synthesized Elucidation of the role of intermolecular electrostatic interactions in inhibiting the efficient translation of molecular optical non-linearity to macroscopic electro-optic activity has permitted systematic modification of materials to achieve electro-optic coefficients approaching 100 pm V –1 Improvements in the optical loss of polymeric materials at wavelengths of 13 and 155 µm have been effected Mode matching of passive transmission and active electro-optic waveguides has been addressed, permitting a dramatic reduction in insertion loss The putative ability of polymeric electro-optic materials to be efficiently integrated with very large scale integration semiconductor electronic circuitry and with passive optical circuitry has been demonstrated Several devices of varying degrees of complexity have been fabricated and evaluated to operational frequencies as high as 150 GHz The operational stability of polymeric devices is very competitive with devices fabricated from lithium niobate and gallium arsenide

403 citations

Journal ArticleDOI
TL;DR: High-performance non-fullerene OSCs with PCEs of up to ca.
Abstract: High-performance non-fullerene OSCs with PCEs of up to ca. 6.0% are demonstrated based on PBDTT-F-TT polymer and a molecular di-PBI acceptor through comprehensive molecular, interfacial, and device engineering. Impressive PCEs can also be retained in devices with relatively thick BHJ layer and processed through non-halogenated solvents, indicating these high-performance non-fullerene OSCs are promising for large-area printing applications.

396 citations

Journal ArticleDOI
TL;DR: Low-temperature, solution-processable Cu-doped NiOX (Cu:NiOx ), prepared via combustion chemistry, is demonstrated as an excellent hole-transporting layer (HTL) for thin-film perovskite solar cells (PVSCs).
Abstract: Low-temperature, solution-processable Cu-doped NiOX (Cu:NiOx ), prepared via combustion chemistry, is demonstrated as an excellent hole-transporting layer (HTL) for thin-film perovskite solar cells (PVSCs). Its good crystallinity, conductivity, and hole-extraction properties enable the derived PVSC to have a high power conversion efficiency (PCE) of 17.74%. Its general applicability for various elecrode materials is also revealed.

388 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report broad bandwidth, 0.1-10 THz time-domain spectroscopy of linear and electro-optic polymers for broadband THz applications.
Abstract: We report broad bandwidth, 0.1–10 THz time-domain spectroscopy of linear and electro-optic polymers. The common THz optical component materials high-density polyethylene, polytetrafluoroethylene, polyimide (Kapton), and polyethylene cyclic olefin copolymer (Topas) were evaluated for broadband THz applications. Host polymers polymethyl methacrylate, polystyrene, and two types of amorphous polycarbonate were also examined for suitability as host for several important chromophores in guest-host electro-optic polymer composites for use as broadband THz emitters and sensors.

375 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations