scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated how the structures of these complementary cyanine salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.
Abstract: An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

51 citations

Journal ArticleDOI
TL;DR: A series of new thiophene-bridged chromophores based on the powerful heterocyclic acceptor 3-(dicyanomethylene)-2,3-dihydrobenzothiophene 1,1-dioxide has been synthesized; the dependence of the linear and second-order nonlinear optical properties and thermal stability of these species upon the donor group and the bridging group have been studied as mentioned in this paper.
Abstract: A series of new thiophene-bridged chromophores based on the powerful heterocyclic acceptor 3-(dicyanomethylene)-2,3-dihydrobenzothiophene-1,1-dioxide has been synthesized; the dependence of the linear and second-order nonlinear optical properties and thermal stability of these species upon the donor group and the bridging group have been studied. In addition, the synthesis of a related new acceptor, not containing the fused benzene ring, is described and a chromophore based upon this acceptor is studied.

51 citations

Journal ArticleDOI
TL;DR: In this paper, a second-order nonlinear optical (NLO) side-chain aromatic polyquinolines have been synthesized using a mild Mitsunobu reaction.
Abstract: A versatile and generally applicable synthetic method for making second-order nonlinear optical (NLO) side-chain aromatic polyquinolines has been developed. This approach emphasizes the ease of incorporating NLO chromophores onto the pendent phenyl moieties of parent polyquinolines at the final stage via a mild Mitsunobu reaction, which provides the synthesis of NLO polyquinolines with a broad variation of polymer backbones and great flexibility in the selection of chromophores. The synthesized NLO side-chain polyquinolines possess high glass transition temperature (Tg > 200 °C), good processability, and excellent thermal stability. The promising results of electrooptic (EO) activity (up to 35 pm/V at 830 nm and 22 pm/V at 1300 nm), optical loss (1.5−2.5 dB/cm), and long-term stability of the poling-induced polar order (r33 values retained >90% of their original values at 85 °C for more than 1000 h) have demonstrated the advantages of this design approach. The excellent combination of these properties in ...

50 citations

Journal ArticleDOI
01 Jul 2015-Small
TL;DR: A new way of graphically relating information is developed, allowing the simultaneous mapping of schematic kinetic relationships between all currently prevailing perovskite deposition and growth techniques.
Abstract: Organo-lead halide perovskite photovoltaics have developed faster than our understanding of the material itself. Using the vast body of work on perovskite processing created in just the past few years, it is possible to create a better picture of this material's complex phase-transformation behavior. This concept paper summarizes and correlates the current understanding of structural intermediates, kinetic controls, and structure-property relationships of organo-lead iodide perovskites. To this end, a new way of graphically relating information is developed, allowing the simultaneous mapping of schematic kinetic relationships between all currently prevailing perovskite deposition and growth techniques.

50 citations

Journal ArticleDOI
TL;DR: Experimental results indicate that the combination of the dual QDs can improve the light-harvesting capability of the cells, and the charge-collection efficiency can be remarkably enhanced by the suppressed charge-recombination process due to the improved QD coverage on TiO2.
Abstract: Generally, high light-harvesting efficiency, electron-injection efficiency, and charge-collection efficiency are the prerequisites for high-efficiency quantum-dot-sensitized solar cells (QDSCs). However, it is fairly difficult for a single QD sensitizer to meet these three requirements simultaneously. It is demonstrated that these parameters can be felicitously balanced by a cosensitization strategy through the adoption of environmental-friendly Zn-Cu-In-Se and Zn-Cu-In-S dual QD sensitizers with cascade energy structure. Experimental results indicate that: i) the combination of the dual QDs can improve the light-harvesting capability of the cells, especially in the visible light window; ii) the cosensitization approach can facilitate electron injection, benefitting from the cascade energy structure of the two QD sensitizers employed; iii) the charge-collection efficiency can be remarkably enhanced by the suppressed charge-recombination process due to the improved QD coverage on TiO2 . Consequently, this cosensitization strategy delivers a new certified efficiency record of 12.98% for liquid-junction QDSCs under AM 1.5G 1 sun irradiation. Moreover, the constructed cells exhibit good stability in a high-humidity environment.

50 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations