scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: This approach was able to realize the production of high-performance red-electrophosphorescent devices and obtain a balanced charge recombination in conjunction with higher current and luminance when using PF-TPA-OXD as the host matrix.
Abstract: We have systematically examined the photoluminescence (PL) and electroluminescence (EL) behavior of blends comprising two efficient red phosphors doped, respectively, into the blue-emitting polyfluorene derivatives PF-TPA-OXD and PF-OXD. The host polymers, which contain both hole- and electron-transporting or merely electron-transporting side chains, are capable of facilitating charge injection and transport. After determining the HOMO and LUMO energy levels of these materials, we were able to match the dopant with its most suitable host to achieve the direct formation and confinement of an exciton at the dopant. This configuration also leads to a reduction in the electrical excitation of the host polymer, which in turn decreases the degree of exciton loss arising from nonradiative decay of the host triplet. Using this approach, we were able to realize the production of high-performance red-electrophosphorescent devices. For Os(fppz)-doped devices, we obtain a balanced charge recombination in conjunction with higher current and luminance when using PF-TPA-OXD as the host matrix; this device reached a maximum external quantum efficiency of 8.37% with a peak brightness of 16 720 cd/m 2 . The absence of charge-transporting pendant units, i.e., the device fabricated from poly[9,9-dioctylfluorene-2,7-diyl] (POF), led, however, to relatively poor electroluminescence characteristics (5.81% and 2144 cd/m 2 ).

50 citations

Journal ArticleDOI
TL;DR: In this paper, an all-dielectric electro-optic (EO) polymer/TiO2 multilayer slot waveguide modulator with low optical insertion loss for high-speed operations is presented.
Abstract: We report an all-dielectric electro-optic (EO) polymer/TiO2 multilayer slot waveguide modulator with low optical insertion loss for high-speed operations. The EO polymer is sandwiched between thin TiO2 slot waveguide films to improve mode confinement in the EO polymer. The structure increased the mode confinement in the TiO2 and EO polymer slot layers and reduced the electrode distance between the Au electrodes without introducing optical loss from the metal electrodes. The half-wave voltage of the modulator was 6.5 V for a 5-mm-long electrode at a wavelength of 1550 nm. The half-wave voltage and length product was 3.25 V·cm.

49 citations

Journal ArticleDOI
TL;DR: In this paper, a series of fullerene acceptors have been selected for the systematic study of their electron-transporting properties on a standardized field effect transistor (FET) platform.
Abstract: A series of fullerene acceptors have been selected for the systematic study of their electron-transporting properties on a standardized field-effect transistor (FET) platform It was found that small structural alternations, functional patterns, and number of addends on fullerene derivatives strongly affect their mobilities The measured charge mobilities correlate well with structural features of these materials and provide useful insights into designing better fullerene-based semiconductors for organic electronics

49 citations

Journal ArticleDOI
TL;DR: In this article, two near-infrared absorbing PSMAs, namely PY2Se-F and PY 2Se-Cl, with a selenophene-fused core and halogenated end-group are developed, combining synergistic effects of selenium and fluorine (F)/chlorine (Cl) substitutions in broadening absorption and enhancing intermolecular interactions.

49 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations