scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a high performance ITO-free flexible polymer solar cell (PSC) is successfully described by integrating the plasmonic effect into the ITO free microcavity architecture.
Abstract: In this work, a high-performance ITO-free flexible polymer solar cell (PSC) is successfully described by integrating the plasmonic effect into the ITO-free microcavity architecture. By carefully controlling the sizes of embedded Ag nanoprisms and their doping positons in the stratified device, a significant enhancement in power conversion efficiency (PCE) is shown from 8.5% (reference microcavity architecture) to 9.4% on flexible substrates. The well-manipulated plasmonic resonances introduced by the embedded Ag nanoprisms with different LSPR peaks allow the complementary light-harvesting with microcavity resonance in the regions of 400–500 nm and 600–700 nm, resulting in the substantially increased photocurrent. This result not only signifies that the spectral matching between the LSPR peaks of Ag nanoprisms and the relatively low absorption response of photoactive layer in the microcavity architecture is an effective strategy to enhance light-harvesting across its absorption region, but also demonstrates the promise of tailoring two different resonance bands in a synergistic manner at desired wavelength region to enhance the efficiency of PSCs.

45 citations

Journal ArticleDOI
TL;DR: PPE2 is found to improve the quality of perovskite films cast on top with larger grain sizes and more oriented crystallization, and rational understanding of the reasons why two isomeric polymer HTMs with almost identical photophysical properties, hole‐transporting ability, and surface wettability deliver so distinctly different device performance under similar device fabrication conditions is manifested.
Abstract: Currently, there are only very few dopant-free polymer hole-transporting materials (HTMs) that can enable perovskite solar cells (PVSCs) to demonstrate a high power conversion efficiency (PCE) of greater than 20%. To address this need, a simple and efficient way is developed to synthesize novel crossconjugated polymers as high performance dopant-free HTMs to endow PVSCs with a high PCE of 21.3%, which is among the highest values reported for single-junction inverted PVSCs. More importantly, rational understanding of the reasons why two isomeric polymer HTMs (PPE1 and PPE2) with almost identical photophysical properties, hole-transporting ability, and surface wettability deliver so distinctly different device performance under similar device fabrication conditions is manifested. PPE2 is found to improve the quality of perovskite films cast on top with larger grain sizes and more oriented crystallization. These results help unveil the new HTM design rules to influence the perovskite growth/crystallization for improving the performance of inverted PVSCs.

45 citations

Journal ArticleDOI
TL;DR: In this article, the effect of a thin organic bulk-heterojunction interlayer on improving the photovoltaic performance of lead sulfide (PbS) colloidal quantum dot (CQD) solar cells was demonstrated.
Abstract: We have successfully demonstrated the effect of a thin organic bulk-heterojunction (BHJ) interlayer on improving the photovoltaic performance of lead sulfide (PbS) colloidal quantum dot (CQD) solar...

45 citations

Journal ArticleDOI
TL;DR: In this article, bipolar NLO chromophores with an interposed conjugated tetraene segment in which all but four of the methine groups are incorporated into a tetrahydronaphthalene framework have been synthesized and characterized.
Abstract: Dipolar NLO chromophores with an interposed conjugated tetraene segment in which all but four of the methine groups are incorporated into a tetrahydronaphthalene framework have been synthesized and characterized. This conformation-locking approach furnishes NLO chromophores possessing an enhanced thermal stability. X-ray crystallographic data indicate that the polyenic chain of these molecules exhibits a near-planar all-trans conformation in the solid state. EFISH measurements show that these conformationally locked tetraenic chromophores exhibit large second-order optical nonlinearities (μ·β ∼4000 × 10-48 cm6 at 1907 nm), although the nonlinearities of the corresponding “unlocked” analogues are slightly larger.

44 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations