scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a facile post deposition treatment utilizing coordination between methylamine (CH3NH2) vapor and CH3NH3PbI3 perovskite that rapidly improves film quality, enhancing power conversion efficiency (PCE) by ∼9%.
Abstract: While organo-metal halide perovskite photovoltaics have seen rapid development, growth of high quality material remains a challenge. Herein, we report a facile post deposition treatment utilizing coordination between methylamine (CH3NH2) vapor and CH3NH3PbI3 perovskite that rapidly improves film quality, enhancing power conversion efficiency (PCE) by ∼9%. We further comprehensively analyze the physical impact of this process with regard to the material's optoelectronic properties and its detailed microstructural changes. Connecting this with an analysis of the source of organo-metal halide perovskite reactivity toward the vapor as well as phase behavior as a function of CH3NH2 vapor pressure and time, we provide design rules for the broad, rational extension of this process to new systems and scales.

43 citations

Journal ArticleDOI
TL;DR: In this article, the role of surface hydroxyl groups on TiO2(B) nanowires was investigated via various surface modifications, and it was found that a higher density of surface hyroxyl group will constantly enhance the chemiresistive response of the nanowire to the nitro-explosives vapors.
Abstract: Thin films of TiO2(B) nanowires are known to have sensitive and fast response to vapors of nitro-explosives under ambient conditions. The sensing response is believed to be affected by the humidity of ambient air that changes the density of hydroxyl groups on the TiO2(B) surfaces. To verify this mechanism, the role of surface hydroxyl groups on TiO2(B) nanowires was investigated via various surface modifications. It was found that a higher density of surface hydroxyl groups will constantly enhance the chemiresistive response of TiO2(B) nanowires to the nitro-explosives vapors. These surface hydroxyl groups serve as a pathway for effective charge transfer between the nitro groups on the explosive molecules and the TiO2(B). The evidence of charge transfer complex formation between nitro groups and titanium dioxide is also confirmed by Fourier transform infrared spectroscopy.

43 citations

Journal ArticleDOI
TL;DR: The AIE properties of two trifluoromethyl substituted distyrylbenzene model compounds were compared and it was found that the fluorescence quantum efficiency of these molecules can be modulated by tuning their subtle solid-state intermolecular interactions.

43 citations

Journal ArticleDOI
TL;DR: In this article, a bulk-heterojunction polymer solar cells based on two indacenodithiophene-containing low bandgap, high mobility polymers in both conventional and inverted device configurations are demonstrated.

43 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the correlations among chemical structure, processing, morphology and device performance of PTB7-Th and showed that the regioregularity plays a crucial role in polymer properties as well as the fabrication process of devices.
Abstract: To address the challenges of reliability and facile processability of a benchmark polymer PTB7-Th, one of the most prevailing donor materials utilized in organic solar cells, we have systematically investigated the correlations among chemical structure, processing, morphology and device performance. Our study reveals that the regioregularity of PTB7-Th plays a crucial role in polymer properties as well as the fabrication process of devices. The regioregular polymer entirely consisting of favourable repeat units is capable of realizing high power conversion efficiency (>10%) in organic solar cells without using any solvent additive and tedious processing treatments. More importantly, the device efficiency based on this regioregular polymer is insensitive over a broad range of film thickness (from 100 nm to >400 nm). This will be very advantageous for manufacturing highly efficient and stable polymer solar cells by high throughput fabrication processes.

42 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations