scispace - formally typeset
Search or ask a question
Author

Alex K.-Y. Jen

Bio: Alex K.-Y. Jen is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 128, co-authored 921 publications receiving 61811 citations. Previous affiliations of Alex K.-Y. Jen include University of Nebraska–Lincoln & Zhejiang California International NanoSystems Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the first order hyperpolarizabilities of donor-acceptor substituted heteroaromatic compounds are measured by the hyper-Rayleigh scattering technique, which utilizes the mechanism of number density fluctuations and enables the second harmonic generation signal of nonlinear optical chromophores to be generated as scattered light.
Abstract: First order hyperpolarizabilities, β, for donor–acceptor substituted heteroaromatic compounds are measured by the hyper‐Rayleigh scattering technique. Hyper‐Rayleigh scattering utilizes the mechanism of number density fluctuations and enables the second harmonic generation signal of nonlinear optical chromophores to be generated as scattered light. Effects of substituting different electron donating groups to the parent heteroaromatic compounds and different solvents on the hyperpolarizability is investigated using this technique.

36 citations

Journal ArticleDOI
TL;DR: In this article, an electrooptic polymer-clad silicon slot waveguide was used to achieve a half-wave voltage of only 0.69V and a bandwidth of 500 MHz.
Abstract: Lowering the operating voltage of electrooptic modulators is desirable for a variety of applications, most notably in analog photonics , and digital data communications . In particular for digital systems such as CPUs, it is desirable to develop modulators that are both temperature-insensitive and compatible with typically sub-2V CMOS electronics ; however, drive voltages in silicon-based MZIs currently exceed 6.5V . Here we show an MZI modulator based on an electrooptic polymer-clad silicon slot waveguide, with a halfwave voltage of only 0.69V, and a bandwidth of 500 MHz. We also show that there are also paths to significantly improve both the bandwidth and drive voltage . Our silicon-organic modulator has an intrinsic power consumption less than 0.66 pJ/bit, nearly an order of magnitude improvement over the previous lowest energy silicon MZI .

36 citations

Journal ArticleDOI
TL;DR: In this article, a series of two-dimensional diketopyrrolopyrrole-based low band gap conjugated polymers were synthesized, and the polymers with thieno[3,2-b]thiophene as a bridge instead of a side chain exhibited increased absorption coefficient and hole mobility.
Abstract: A series of two-dimensional diketopyrrolopyrrole-based low band gap conjugated polymers were synthesized. Replacing thiophene with thieno[3,2-b]thiophene in the side chain and bridge resulted in significant changes to the optical, electrochemical, and morphological properties of the polymers, as well as the subsequent performance of devices made from these materials. The polymer with thieno[3,2-b]thiophene as a bridge instead of a side chain exhibited an increased absorption coefficient and hole mobility, and resulted in the highest power conversion efficiency (5.34%) in this series of polymers. This finding provides valuable insight for the development of more efficient low band-gap polymers.

36 citations

Journal ArticleDOI
TL;DR: In this article, the authors synthesize and characterize europium complexes containing either symmetrical or unsymmetrical diphenanthryl β-diketone ligands.

35 citations

Journal ArticleDOI
TL;DR: Pyroelectric crystals are used as a conformal and detachable electric field source to efficiently pole electro-optic polymers in both parallel-plate (transverse) and in-plane (quasi-longitudinal) configurations.
Abstract: Pyroelectric crystals are used as a conformal and detachable electric field source to efficiently pole electro-optic (E-O) polymers in both parallel-plate (transverse) and in-plane (quasi-longitudinal) configurations. Large Pockels coefficients in poled thin films and high tunability of resonance wavelength shift in hybrid polymer silicon slot waveguide ring-resonator modulators have been achieved using this method.

35 citations


Cited by
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Abstract: The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.

5,458 citations