scispace - formally typeset
Search or ask a question
Author

Alex Krizhevsky

Other affiliations: University of Toronto
Bio: Alex Krizhevsky is an academic researcher from Google. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 20, co-authored 29 publications receiving 139770 citations. Previous affiliations of Alex Krizhevsky include University of Toronto.

Papers
More filters
Proceedings ArticleDOI
26 May 2015
TL;DR: This work presents a Large-Field-Of-View (LFOV) deep network for pedestrian detection, that can achieve high accuracy and is designed to make deep networks work faster for detection problems.
Abstract: Pedestrian detection is of crucial importance to autonomous driving applications. Methods based on deep learning have shown significant improvements in accuracy, which makes them particularly suitable for applications, such as pedestrian detection, where reducing the miss rate is very important. Although they are accurate, their runtime has been at best in seconds per image, which makes them not practical for onboard applications. We present a Large-Field-Of-View (LFOV) deep network for pedestrian detection, that can achieve high accuracy and is designed to make deep networks work faster for detection problems. The idea of the proposed Large-Field-of-View deep network is to learn to make classification decisions simultaneously and accurately at multiple locations. The LFOV network processes larger image areas at much faster speeds than typical deep networks have been able to, and can intrinsically reuse computations. Our pedestrian detection solution, which is a combination of a LFOV network and a standard deep network, works at 280 ms per image on GPU and achieves 35.85 average miss rate on the Caltech Pedestrian Detection Benchmark.

98 citations

Patent
23 Dec 2013
TL;DR: In this paper, a parallel convolutional neural network (CNN) is implemented by a plurality of CNNs each on a respective processing node, and each CNN has a multiplicity of layers.
Abstract: A parallel convolutional neural network is provided. The CNN is implemented by a plurality of convolutional neural networks each on a respective processing node. Each CNN has a plurality of layers. A subset of the layers are interconnected between processing nodes such that activations are fed forward across nodes. The remaining subset is not so interconnected.

66 citations

Patent
30 Aug 2013
TL;DR: In this article, a switch is linked to feature detectors in at least some of the layers of the neural network and randomly selectively disables each of the feature detectors according to a preconfigured probability.
Abstract: A system for training a neural network. A switch is linked to feature detectors in at least some of the layers of the neural network. For each training case, the switch randomly selectively disables each of the feature detectors in accordance with a preconfigured probability. The weights from each training case are then normalized for applying the neural network to test data.

41 citations

Patent
27 Jul 2017
TL;DR: In this article, a trajectory planning neural network is used to estimate a set of trajectories of a vehicle in a given environment, where each trajectory score corresponds to a different location of a possible location in the environment of the vehicle.
Abstract: Systems, methods, devices, and other techniques for planning a trajectory of a vehicle. A computing system can implement a trajectory planning neural network configured to, at each time step of multiple time steps: obtain a first neural network input and a second neural network input. The first neural network input can characterize a set of waypoints indicated by the waypoint data, and the second neural network input can characterize (a) environmental data that represents a current state of an environment of the vehicle and (b) navigation data that represents a planned navigation route for the vehicle. The trajectory planning neural network may process the first neural network input and the second neural network input to generate a set of output scores, where each output score in the set of output scores corresponds to a different location of a set of possible locations in a vicinity of the vehicle.

29 citations

Patent
Alex Krizhevsky1
10 Apr 2015
TL;DR: In this paper, the authors describe a system where each worker is configured to maintain a respective replica of each of the convolutional layers of the CNN and a respective disjoint partition of each fully connected layer.
Abstract: The invention relates to parallelizing the training of convolutional neural networks. According to the invention, methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a convolutional neural network (CNN) are mentioned. The system includes a plurality of workers, wherein each worker is configured to maintain a respective replica of each of the convolutional layers of the CNN and a respective disjoint partition of each of the fully-connected layers of the CNN, wherein each replica of a convolutional layer includes all of the nodes in the convolutional layer, and wherein each disjoint partition of a fully-connected layer includes a portion of the nodes of the fully-connected layer.

23 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations