scispace - formally typeset
Search or ask a question
Author

Alex Schechter

Bio: Alex Schechter is an academic researcher from Ariel University. The author has contributed to research in topics: Catalysis & Electrolyte. The author has an hindex of 29, co-authored 86 publications receiving 5863 citations. Previous affiliations of Alex Schechter include Case Western Reserve University & Bar-Ilan University.


Papers
More filters
Journal ArticleDOI
12 Oct 2000-Nature
TL;DR: Rechargeable Mg battery systems that show promise for applications comprise electrolyte solutions based on Mg organohaloaluminate salts, and MgxMo 3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics.
Abstract: The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, because it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems Moreover, in contrast to lead and cadmium, magnesium is inexpensive, environmentally friendly and safe to handle But the development of Mg batteries has been hindered by two problems First, owing to the chemical activity of Mg, only solutions that neither donate nor accept protons are suitable as electrolytes; but most of these solutions allow the growth of passivating surface films, which inhibit any electrochemical reaction Second, the choice of cathode materials has been limited by the difficulty of intercalating Mg ions in many hosts Following previous studies of the electrochemistry of Mg electrodes in various non-aqueous solutions, and of a variety of intercalation electrodes, we have now developed rechargeable Mg battery systems that show promise for applications The systems comprise electrolyte solutions based on Mg organohaloaluminate salts, and Mg(x)Mo3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics We expect that further improvements in the energy density will make these batteries a viable alternative to existing systems

1,851 citations

Journal ArticleDOI
TL;DR: In this paper, a general description of the electrochemical behavior of Mg electrodes in different types of polar aprotic systems was provided, including acetonitrile (AN), propylene carbonate (PC), and tetrahydrofuran (THF).

433 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative study of lithium and graphite electrodes in a large matrix of solvents, salts and additives is presented, showing an interesting correlation between the three-dimensional structure of graphite electrode, the diffusion coefficient of Li+ and their voltammetric behaviour in Li-intercalation processes.

424 citations

Journal ArticleDOI
TL;DR: In this paper, a review of surface phenomena using in situ and ex situ FTIR spectroscopy, atomic force microscopy (in situ AFM), electrochemical quartz crystal microbalance (EQCM), and impedance spectrography (EIS) is presented.

417 citations

Journal ArticleDOI
TL;DR: In this article, failure and stabilization mechanisms of Li−graphite electrodes were studied in model electrolyte systems, tetrahydrofuran (THF), propylene carbonate (PC), THF containing water contamination, and THF/PC solutions were used.
Abstract: The aim of this work was to study failure and stabilization mechanisms of Li−graphite electrodes. As model electrolyte systems, tetrahydrofuran (THF), propylene carbonate (PC), THF containing water contamination, and THF/PC solutions were used. A variety of electrode behavior can be observed in these solutions including reversible intercalation at high capacity, cyclability with deteriorating capacity, and in cases of dry THF and PC solutions, disability of Li intercalation. Chronopotentiometry, chronoamperometry, cyclic voltammetry impedance spectroscopy, electron microscopy, in situ and ex situ XRD, and surface sensitive FTIR spectroscopy were used in order to understand the reasons for the stability or failure of Li−graphite intercalation anodes. In PC and dry THF, massive solvent reduction occurs with a relatively low degree of electrode passivation. These processes change the electrode's morphology and electrically isolate carbon particles. At low concentration of water (>40 ppm) and PC (optimum 1 M)...

391 citations


Cited by
More filters
Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Abstract: 2.1. Solvents 4307 2.1.1. Propylene Carbonate (PC) 4308 2.1.2. Ethers 4308 2.1.3. Ethylene Carbonate (EC) 4309 2.1.4. Linear Dialkyl Carbonates 4310 2.2. Lithium Salts 4310 2.2.1. Lithium Perchlorate (LiClO4) 4311 2.2.2. Lithium Hexafluoroarsenate (LiAsF6) 4312 2.2.3. Lithium Tetrafluoroborate (LiBF4) 4312 2.2.4. Lithium Trifluoromethanesulfonate (LiTf) 4312 2.2.5. Lithium Bis(trifluoromethanesulfonyl)imide (LiIm) and Its Derivatives 4313

5,710 citations

Journal ArticleDOI
TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution. The development of new materials for Li-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. Li-ion batteries can be considered to be the most impressive success story of modern electrochemistry in the last two decades. They power most of today's portable devices, and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale for more demanding applications, such as EV. Since this field is advancing rapidly and attracting an increasing number of researchers, it is important to provide current and timely updates of this constantly changing technology. In this review, we describe the key aspects of Li-ion batteries: the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solutions, as well as important future directions for R&D of advanced Li-ion batteries for demanding use, such as EV and load-leveling applications.

5,531 citations

Journal ArticleDOI
TL;DR: The notion of sustainability is introduced through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability.
Abstract: Energy storage using batteries offers a solution to the intermittent nature of energy production from renewable sources; however, such technology must be sustainable. This Review discusses battery development from a sustainability perspective, considering the energy and environmental costs of state-of-the-art Li-ion batteries and the design of new systems beyond Li-ion. Images: batteries, car, globe: © iStock/Thinkstock.

5,271 citations

Journal ArticleDOI
TL;DR: The current understanding on Li anodes is summarized, the recent key progress in materials design and advanced characterization techniques are highlighted, and the opportunities and possible directions for future development ofLi anodes in applications are discussed.
Abstract: Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

4,302 citations