scispace - formally typeset
Search or ask a question
Author

Alex Stewart

Bio: Alex Stewart is an academic researcher from University of Ottawa. The author has contributed to research in topics: Strengthening the reporting of observational studies in epidemiology & Evidence-based practice. The author has an hindex of 8, co-authored 8 publications receiving 2013 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The STREGA recommendations are presented, which are aimed at improving the reporting of genetic association studies and are designed to improve the quality of studies.
Abstract: Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

766 citations

Journal ArticleDOI
Ron Do1, Ron Do2, Nathan O. Stitziel3, Hong-Hee Won1, Hong-Hee Won2, Anders Berg Jørgensen4, Stefano Duga5, Pier Angelica Merlini, Adam Kiezun2, Martin Farrall6, Anuj Goel6, Or Zuk2, Illaria Guella5, Rosanna Asselta5, Leslie A. Lange7, Gina M. Peloso2, Gina M. Peloso1, Paul L. Auer8, Domenico Girelli9, Nicola Martinelli9, Deborah N. Farlow2, Mark A. DePristo2, Robert Roberts10, Alex Stewart10, Danish Saleheen11, John Danesh11, Stephen E. Epstein12, Suthesh Sivapalaratnam13, G. Kees Hovingh13, John J.P. Kastelein13, Nilesh J. Samani14, Heribert Schunkert15, Jeanette Erdmann16, Svati H. Shah17, William E. Kraus17, Robert W. Davies10, Majid Nikpay10, Christopher T. Johansen18, Jian Wang18, Robert A. Hegele18, Eliana Hechter2, Winfried März19, Winfried März20, Winfried März21, Marcus E. Kleber19, Jie Huang, Andrew D. Johnson22, Mingyao Li23, Greg L. Burke24, Myron D. Gross25, Yongmei Liu26, Themistocles L. Assimes27, Gerardo Heiss7, Ethan M. Lange7, Aaron R. Folsom25, Herman A. Taylor28, Oliviero Olivieri9, Anders Hamsten29, Robert Clarke6, Dermot F. Reilly30, Wu Yin30, Manuel A. Rivas6, Peter Donnelly6, Jacques E. Rossouw22, Bruce M. Psaty31, Bruce M. Psaty32, David M. Herrington26, James G. Wilson28, Stephen S. Rich33, Michael J. Bamshad31, Russell P. Tracy34, L. Adrienne Cupples35, Daniel J. Rader23, Muredach P. Reilly23, John A. Spertus36, Sharon Cresci3, Jaana Hartiala37, W.H. Wilson Tang38, Stanley L. Hazen38, Hooman Allayee37, Alexander P. Reiner31, Alexander P. Reiner8, Christopher S. Carlson8, Charles Kooperberg8, Rebecca D. Jackson39, Eric Boerwinkle40, Eric S. Lander2, Stephen M. Schwartz31, Stephen M. Schwartz8, David S. Siscovick31, Ruth McPherson10, Anne Tybjærg-Hansen4, Gonçalo R. Abecasis41, Hugh Watkins6, Deborah A. Nickerson31, Diego Ardissino, Shamil R. Sunyaev2, Shamil R. Sunyaev1, Christopher J. O'Donnell, David Altshuler1, David Altshuler2, Stacey Gabriel2, Sekar Kathiresan2, Sekar Kathiresan1 
05 Feb 2015-Nature
TL;DR: Kathiresan et al. as mentioned in this paper used exome sequencing of nearly 10,000 people to identify alleles associated with early-onset myocardial infarction; mutations in low-density lipoprotein receptor (LDLR) or apolipoprotein A-V (APOA5) were associated with disease risk.
Abstract: Exome sequence analysis of nearly 10,000 people was carried out to identify alleles associated with early-onset myocardial infarction; mutations in low-density lipoprotein receptor (LDLR) or apolipoprotein A-V (APOA5) were associated with disease risk, identifying the key roles of low-density lipoprotein cholesterol and metabolism of triglyceride-rich lipoproteins. Sekar Kathiresan and colleagues use exome sequencing of nearly 10,000 people to probe the contribution of multiple rare mutations within a gene to risk for myocardial infarction at a population level. They find that mutations in low-density lipoprotein receptor (LDLR) or apolipoprotein A-V (APOA5) are associated with disease risk. When compared with non-carriers, LDLR mutation carriers had higher plasma levels of LDL cholesterol, whereas APOA5 mutation carriers had higher plasma levels of triglycerides. As well as confirming that APOA5 is a myocardial infarction gene, this work informs the design and conduct of rare-variant association studies for complex diseases. Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, genetic inheritance is a major component to risk1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3,4,5,6,7,8, whereas common variants at more than 45 loci have been associated with MI risk in the population9,10,11,12,13,14,15. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol16. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl−1. At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.

521 citations

Journal ArticleDOI
TL;DR: The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Abstract: Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

344 citations

Journal ArticleDOI
TL;DR: The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.
Abstract: Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.

176 citations

Journal ArticleDOI
TL;DR: The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Abstract: Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

154 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In virtually all medical domains, diagnostic and prognostic multivariable prediction models are being developed, validated, updated, and implemented with the aim to assist doctors and individuals in estimating probabilities and potentially influence their decision making.
Abstract: The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) Statement includes a 22-item checklist, which aims to improve the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. This explanation and elaboration document describes the rationale; clarifies the meaning of each item; and discusses why transparent reporting is important, with a view to assessing risk of bias and clinical usefulness of the prediction model. Each checklist item of the TRIPOD Statement is explained in detail and accompanied by published examples of good reporting. The document also provides a valuable reference of issues to consider when designing, conducting, and analyzing prediction model studies. To aid the editorial process and help peer reviewers and, ultimately, readers and systematic reviewers of prediction model studies, it is recommended that authors include a completed checklist in their submission. The TRIPOD checklist can also be downloaded from www.tripod-statement.org.

2,982 citations

Journal ArticleDOI
07 Jan 2015-BMJ
TL;DR: The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used, and is best used in conjunction with the TRIPod explanation and elaboration document.
Abstract: Prediction models are developed to aid health-care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health-care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org).

1,973 citations

Journal ArticleDOI
Majid Nikpay1, Anuj Goel2, Won H-H.3, Leanne M. Hall4  +164 moreInstitutions (60)
TL;DR: This article conducted a meta-analysis of coronary artery disease (CAD) cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 millions low-frequency (0.005 < MAF < 0.5) variants.
Abstract: Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of ∼185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.

1,839 citations

Journal ArticleDOI
TL;DR: The nature of the prediction in diagnosis is estimating the probability that a specific outcome or disease is present (or absent) within an individual, at this point in timethat is, the moment of prediction (T= 0), and prognostic prediction involves a longitudinal relationship.
Abstract: Prediction models are developed to aid health care providers in estimating the probability or risk that a specific disease or condition is present (diagnostic models) or that a specific event will occur in the future (prognostic models), to inform their decision making. However, the overwhelming evidence shows that the quality of reporting of prediction model studies is poor. Only with full and clear reporting of information on all aspects of a prediction model can risk of bias and potential usefulness of prediction models be adequately assessed. The Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative developed a set of recommendations for the reporting of studies developing, validating, or updating a prediction model, whether for diagnostic or prognostic purposes. This article describes how the TRIPOD Statement was developed. An extensive list of items based on a review of the literature was created, which was reduced after a Web-based survey and revised during a 3-day meeting in June 2011 with methodologists, health care professionals, and journal editors. The list was refined during several meetings of the steering group and in e-mail discussions with the wider group of TRIPOD contributors. The resulting TRIPOD Statement is a checklist of 22 items, deemed essential for transparent reporting of a prediction model study. The TRIPOD Statement aims to improve the transparency of the reporting of a prediction model study regardless of the study methods used. The TRIPOD Statement is best used in conjunction with the TRIPOD explanation and elaboration document. To aid the editorial process and readers of prediction model studies, it is recommended that authors include a completed checklist in their submission (also available at www.tripod-statement.org).

1,615 citations

Journal ArticleDOI
TL;DR: The presence of CHIP in peripheral‐blood cells was associated with nearly a doubling in the risk of coronary heart disease in humans and with accelerated atherosclerosis in mice.
Abstract: BackgroundClonal hematopoiesis of indeterminate potential (CHIP), which is defined as the presence of an expanded somatic blood-cell clone in persons without other hematologic abnormalities, is common among older persons and is associated with an increased risk of hematologic cancer. We previously found preliminary evidence for an association between CHIP and atherosclerotic cardiovascular disease, but the nature of this association was unclear. MethodsWe used whole-exome sequencing to detect the presence of CHIP in peripheral-blood cells and associated such presence with coronary heart disease using samples from four case–control studies that together enrolled 4726 participants with coronary heart disease and 3529 controls. To assess causality, we perturbed the function of Tet2, the second most commonly mutated gene linked to clonal hematopoiesis, in the hematopoietic cells of atherosclerosis-prone mice. ResultsIn nested case–control analyses from two prospective cohorts, carriers of CHIP had a risk of c...

1,536 citations