scispace - formally typeset
A

Alex Zunger

Researcher at University of Colorado Boulder

Publications -  838
Citations -  85746

Alex Zunger is an academic researcher from University of Colorado Boulder. The author has contributed to research in topics: Band gap & Electronic structure. The author has an hindex of 128, co-authored 826 publications receiving 78798 citations. Previous affiliations of Alex Zunger include Tel Aviv University & University of Wisconsin-Madison.

Papers
More filters
Journal ArticleDOI

Self-interaction correction to density-functional approximations for many-electron systems

TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.
Journal ArticleDOI

Special quasirandom structures.

TL;DR: It is shown that it is possible to design special quasirandom structures'' (SQS) that mimic for small {ital N} the first few, physically most relevant radial correlation functions of a perfectly random structure far better than the standard technique does.
Journal ArticleDOI

Intrinsic n -type versus p -type doping asymmetry and the defect physics of ZnO

TL;DR: In this paper, the authors study the intrinsic defect physics of ZnO and find that ZnOs cannot be doped p type via native defects, despite the fact that they are shallow donors.
Journal ArticleDOI

Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides.

TL;DR: The theoretical defect model for In(2)O(3) and ZnO finds that intrinsic acceptors have a high Delta H explaining high n-dopability, and the O vacancy V(O) has a metastable shallow state, explaining the paradoxical coexistence of coloration and conductivity.
Journal ArticleDOI

Defect physics of the CuInSe 2 chalcopyrite semiconductor

TL;DR: In this article, the authors studied the defect physics in a chalcopyrite semiconductor and showed that it takes much less energy to form a Cu vacancy in the semiconductor than to form cation vacancies in II-VI compounds and that defect formation energies vary considerably both with the Fermi energy and with the chemical potential of the atomic species.