scispace - formally typeset
Search or ask a question
Author

Alex Zunger

Bio: Alex Zunger is an academic researcher from University of Colorado Boulder. The author has contributed to research in topics: Band gap & Quantum dot. The author has an hindex of 128, co-authored 826 publications receiving 78798 citations. Previous affiliations of Alex Zunger include Tel Aviv University & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a DFT model Hamiltonian was constructed to study spin splitting at constant chemistry while retaining the realistic atomic-scale structure including ligands, which is a paradigm shift relative to the convention of modeling magnets without considering the nonmagnetic ligand that mediates indirect magnetic interaction (e.g., superexchange).
Abstract: Recent studies show the nonrelativistic antiferromagnetic ordering could generate momentum-dependent spin splitting analogous to the Rashba effect but free from the requirement of relativistic spin-orbit coupling. Whereas the classification of such compounds can be illustrated by different spin-splitting prototypes (SSTs) from symmetry analysis and density-functional-theory calculations, the huge variation in chemical bonding and structures of these diverse compounds possibly clouds the issue of how much of the variation in spin splitting can be traced back to the symmetry-defined characteristics, rather to the underlining chemical and structural diversity. The alternative model Hamiltonian approaches do not confront the issues of chemical and structural complexity but often consider only the magnetic sublattice, dealing with the all-important effects of the nonmagnetic ligands via renormalizing the interactions between the magnetic sites. To this end, we constructed a DFT model Hamiltonian that allows us to study SSTs at constant chemistry while retaining the realistic atomic-scale structure including ligands. This is accomplished by using a single, universal magnetic skeletal lattice (${\mathrm{Ni}}^{2+}$ ions in rocksalt NiO) and designing small displacements of the nonmagnetic (oxygen) sublattice which produce, by design, the different SST magnetic symmetries. We show that (i) even similar crystal structures having very similar band structures can lead to contrasting behavior of spin splitting vs momentum, and (ii) even subtle deformations of the nonmagnetic ligand sublattice could cause a giant spin splitting in AFM-induced SST. This is a paradigm shift relative to the convention of modeling magnets without considering the nonmagnetic ligand that mediates indirect magnetic interaction (e.g., superexchange).

10 citations

Journal ArticleDOI
TL;DR: An algorithm for learning the function that maps a material structure to its value on some property, given the value of this function on several structures is presented, following the paradigm of separated representations.
Abstract: We present an algorithm for learning the function that maps a material structure to its value on some property, given the value of this function on several structures. We pose this problem as one of learning (regressing) a function of many variables from scattered data. Each structure is first converted to a weighted set of points by a process that removes irrelevant translations and rotations but otherwise retains full information about the structure. Then, incorporating a weighted average for each structure, we construct the multivariate regression function as a sum of separable functions, following the paradigm of separated representations. The algorithm can treat all finite and periodic structures within a common framework, and in particular does not require all structures to lie on a common lattice. We show how the algorithm simplifies when the structures do lie on a common lattice, and we present numerical results for that case.

10 citations

Journal ArticleDOI
TL;DR: In this article, the effects of diluted nitrogen impurities on the valence- and conduction-band states of GaP have been predicted and measured experimentally, using state-of-the-art atomistic modeling: they use large supercells with screened pseudopotentials and consider several random realizations of the nitrogen configurations.
Abstract: The effects of diluted nitrogen impurities on the valence- and conduction-band states of $\mathrm{Ga}{\mathrm{P}}_{1\ensuremath{-}x}{\mathrm{N}}_{x}$ have been predicted and measured experimentally. The calculation uses state-of-the-art atomistic modeling: we use large supercells with screened pseudopotentials and consider several random realizations of the nitrogen configurations. These calculations agree with photoluminescence excitation (PLE) measurements performed for nitrogen concentrations $x$ up to 0.035 and photon energies up to $1\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$ above the GaP optical-absorption edge, as well as with published ellipsometry data. In particular, a predicted nitrogen-induced buildup of the $L$ character near the valence- and conduction-band edges accounts for the surprising broad-absorption plateau observed in PLE between the ${X}_{1c}$ and the ${\ensuremath{\Gamma}}_{1c}$ critical points of GaP. Moreover, theory accounts quantitatively for the downward bowing of the indirect conduction-band edge and for the upward bowing of the direct transition with increasing nitrogen concentration. We review some of the controversies in the literature regarding the shifts in the conduction band with composition, and conclude that measured results at ultralow N concentration cannot be used to judge behavior at a higher concentration. In particular, we find that at the high concentrations of nitrogen studied here $(\ensuremath{\sim}1%)$ the conduction-band edge (CBE) is a hybridized state made from the original GaP ${X}_{1c}$ band-edge state plus all cluster states. In this limit, the CBE plunges down in energy as the N concentration increases, in quantitative agreement with the measurements reported here. However, at ultralow nitrogen concentrations $(l0.1%)$, the CBE is the nearly unperturbed host ${X}_{1c}$, which does not sense the nitrogen cluster levels. Thus, this state does not move energetically as nitrogen is added and stays pinned in energy, in agreement with experimental results.

10 citations

Journal ArticleDOI
10 Nov 2003
TL;DR: In this article, the effects of interfacial atomic segregation on the electronic and optical properties of InAs/GaSb superlattices were studied and a pseudopotential method was proposed to predict the band structure dependence on the detailed atomic configuration.
Abstract: The authors study the effects of interfacial atomic segregation on the electronic and optical properties of InAs/GaSb superlattices. They describe their atomistic empirical pseudopotential method and test its performance against the available experimental data. They show its ability to predict the band structure dependence on the detailed atomic configuration, and thus to properly account for the effects of interfacial atomic segregation and structural disorder. They also show how their method avoids the approximations underlying the pseudopotential method of Dente and Tilton, which gives different results. The application of the proposed method to the InAs/GaSb superlattices allows the explanation of some observed experimental results, such as: the bandgap difference between (InAs)8/(GaSb)8 superlattices with almost pure InSb-like or GaAs-like interfaces; the large blue shift of the bandgap when the growth temperature of the superlattice increases; and the blue shift of the bandgap of (InAs)8/(GaSb)n superlattices with increasing GaSb period n. They present a detailed comparison of their predicted blue shift with that obtained by other theories.

10 citations

Journal ArticleDOI
TL;DR: By comparing the DOS derived from the widely used "standard model", the effective mass approximation (EMA) in single parabolic band mode, with that from direct atomistic pseudopotential theory calculations for GaAs and InAs nanowires, this work uncovers significant qualitative and quantitative shortcomings of the standard description.
Abstract: One-dimensional semiconductor nanowires hold the promise for various optoelectronic applications since they combine the advantages of quantized in-plane energy levels (as in zero-dimensional quantum dots) with a continuous energy spectrum along the growth direction (as in three-dimensional bulk materials). This dual characteristic is reflected in the density of states (DOS), which is thus the key quantity describing the electronic structures of nanowires, central to the analysis of electronic transport and spectroscopy. By comparing the DOS derived from the widely used “standard model”, the effective mass approximation (EMA) in single parabolic band mode, with that from direct atomistic pseudopotential theory calculations for GaAs and InAs nanowires, we uncover significant qualitative and quantitative shortcomings of the standard description. In the EMA description the nanowire DOS is rendered as a series of sharply rising peaks having slowly decaying tails, with characteristic peak height and spacing, al...

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition, and a detailed analysis of the local structural properties and their changes induced by an annealing process is reported.
Abstract: We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal--amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-temperature density-functional theory of the one-electron states, (b) exact energy minimization and hence calculation of the exact Hellmann-Feynman forces after each molecular-dynamics step using preconditioned conjugate-gradient techniques, (c) accurate nonlocal pseudopotentials, and (d) Nos\'e dynamics for generating a canonical ensemble. This method gives perfect control of the adiabaticity of the electron-ion ensemble and allows us to perform simulations over more than 30 ps. The computer-generated ensemble describes the structural, dynamic, and electronic properties of liquid and amorphous Ge in very good agreement with experiment. The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition. We report a detailed analysis of the local structural properties and their changes induced by an annealing process. The geometrical, bonding, and spectral properties of defects in the disordered tetrahedral network are investigated and compared with experiment.

16,744 citations

Journal ArticleDOI
TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.
Abstract: The exact density functional for the ground-state energy is strictly self-interaction-free (i.e., orbitals demonstrably do not self-interact), but many approximations to it, including the local-spin-density (LSD) approximation for exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any density functional for the energy; correction of the self-consistent one-electron potenial follows naturally from the variational principle. Both methods are sanctioned by the Hohenberg-Kohn theorem. Although the first method introduces an orbital-dependent single-particle potential, the second involves a local potential as in the Kohn-Sham scheme. We apply the first method to LSD and show that it properly conserves the number content of the exchange-correlation hole, while substantially improving the description of its shape. We apply this method to a number of physical problems, where the uncorrected LSD approach produces systematic errors. We find systematic improvements, qualitative as well as quantitative, from this simple correction. Benefits of SIC in atomic calculations include (i) improved values for the total energy and for the separate exchange and correlation pieces of it, (ii) accurate binding energies of negative ions, which are wrongly unstable in LSD, (iii) more accurate electron densities, (iv) orbital eigenvalues that closely approximate physical removal energies, including relaxation, and (v) correct longrange behavior of the potential and density. It appears that SIC can also remedy the LSD underestimate of the band gaps in insulators (as shown by numerical calculations for the rare-gas solids and CuCl), and the LSD overestimate of the cohesive energies of transition metals. The LSD spin splitting in atomic Ni and $s\ensuremath{-}d$ interconfigurational energies of transition elements are almost unchanged by SIC. We also discuss the admissibility of fractional occupation numbers, and present a parametrization of the electron-gas correlation energy at any density, based on the recent results of Ceperley and Alder.

16,027 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations