scispace - formally typeset
Search or ask a question
Author

Alex Zunger

Bio: Alex Zunger is an academic researcher from University of Colorado Boulder. The author has contributed to research in topics: Band gap & Quantum dot. The author has an hindex of 128, co-authored 826 publications receiving 78798 citations. Previous affiliations of Alex Zunger include Tel Aviv University & University of Wisconsin-Madison.


Papers
More filters
Journal Article
TL;DR: In this paper, a combination of a genetic algorithm and a semi-empirical pseudopotential Hamiltonian for describing the electronic structures was used to explore hundreds of thousands of possible coaxial core/multishell Si/Ge nanowires with the orientation of [001, [110], and [111], discovering some "magic sequences" of core followed by specific Si/G multishells, which can offer both a direct bandgap and a strong oscillator strength.
Abstract: Finding a Si-based material with strong optical activity at the band-edge remains a challenge despite decades of research. The interest lies in combining optical and electronic functions on the same wafer, while retaining the extraordinary know-how developed for Si. However, Si is an indirect-gap material. The conservation of crystal momentum mandates that optical activity at the band-edge includes a phonon, on top of an electron-hole pair, and hence photon absorption and emission remain fairly unlikely events requiring optically rather thick samples. A promising avenue to convert Si-based materials to a strong light-absorber/emitter is to combine the effects on the band-structure of both nanostructuring and alloying. The number of possible configurations, however, shows a combinatorial explosion. Furthermore, whereas it is possible to readily identify the configurations that are formally direct in the momentum space (due to band-folding) yet do not have a dipole-allowed transition at threshold, the problem becomes not just calculation of band structure but also calculation of absorption strength. Using a combination of a genetic algorithm and a semiempirical pseudopotential Hamiltonian for describing the electronic structures, we have explored hundreds of thousands of possible coaxial core/multishell Si/Ge nanowires with the orientation of [001], [110], and [111], discovering some "magic sequences" of core followed by specific Si/Ge multishells, which can offer both a direct bandgap and a strong oscillator strength. The search has revealed a few simple design principles: (i) the Ge core is superior to the Si core in producing strong bandgap transition; (ii) [001] and [110] orientations have direct bandgap, whereas the [111] orientation does not; (iii) multishell nanowires can allow for greater optical activity by as much as an order of magnitude over plain nanowires; (iv) the main motif of the winning configurations giving direct allowed transitions involves rather thin Si shell embedded within wide Ge shells. We discuss the physical origin of the enhanced optical activity, as well as the effect of possible experimental structural imperfections on optical activity in our candidate core/multishell nanowires.

44 citations

Journal ArticleDOI
TL;DR: In this article, a special-quasirandom-structures (SQS) approach is proposed to study the electronic density of states of random alloys, where the lattice sites of a periodic supercell are occupied by A's and B's in such a way that the structural correlation functions closely mimic those of a perfectly random infinite alloy.
Abstract: The electronic density of states and mixing enthalpies of random substitutional ${\mathit{A}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$${\mathit{B}}_{\mathit{x}}$ alloys have often been described within the single-site coherent-potential approximation (SCPA). There one assumes that each atom interacts with a fictitious, highly symmetric average medium and that at a given composition x, all A atoms (and separately, all B atoms) are equivalent (i.e., have the same charges and atomic sizes). In reality, however, a random alloy manifests a distribution of different (generally, low-symmetry) local environments, whereby an atom surrounded locally mostly by like atoms can have different charge-transfer or structural relaxations than an atom surrounded mostly by unlike atoms. Such ``environmental effects'' (averaged out in the SCPA) were previously studied in terms of simple model Hamiltonians. We offer here an efficient method capable of describing such effects within first-principles self-consistent electronic-structure theory. This is accomplished through the use of the ``special-quasirandom-structures'' (SQS) concept [Zunger et al., Phys. Rev. Lett. 65, 353 (1990)], whereby the lattice sites of a periodic ``supercell'' are occupied by A's and B's in such a way that the structural correlation functions closely mimic those of a perfectly random infinite alloy. The self-consistent charge density, total and local density of states, and mixing enthalpies are then obtained by applying band theory (here, the linearized augmented-plane-wave method) to the SQS. Application to ${\mathrm{Ag}}_{0.5}$${\mathrm{Pd}}_{0.5}$ and ${\mathrm{Ag}}_{0.5}$${\mathrm{Au}}_{0.5}$ alloys clearly reveals environmental effects; that is, the charge distribution and local density of states of a given atomic site depend sensitively not only on the composition and occupation of the site but also on the distribution of atoms around it. This SQS approach provides a rather general framework for studying the electronic density of states of alloys.

44 citations

Journal ArticleDOI
TL;DR: Using density-functional calculations, this paper obtained the (001) biaxial strain dependence of the valence and conduction band energies of GaN, GaP, GaAs, InN, InP, and InAs.
Abstract: Using density-functional calculations, we obtain the (001) biaxial strain dependence of the valence and conduction band energies of GaN, GaP, GaAs, InN, InP, and InAs. The results are fit to a convenient-to-use polynomial and the fits provided in tabular form. Using the calculated biaxial deformation potentials in large supercell empirical pseudopotential calculations, we demonstrate that epitaxial strain reduces the InGaN alloy bowing coefficient compared to relaxed bulk alloys.

43 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that intrinsic selectivity in circular polarization is to be expected on the basis of fundamental spin-orbit physics for bilayers of transition-metal dichalcogenides.
Abstract: The circular polarization (CP) that the photoluminescence inherits from the excitation source in $n$ monolayers of transition-metal dichalcogenides ${(M{X}_{2})}_{n}$ has been previously explained as a special feature of odd values of $n$, where the inversion symmetry is absent. This ``valley polarization'' effect results from the fact that, in the absence of inversion symmetry, charge carriers in different band valleys could be selectively excited by different circular polarized light. Although several experiments observed CP in centrosymmetric $M{X}_{2}$ systems, e.g., for bilayer $M{X}_{2}$, they were dismissed as being due to some extrinsic sample irregularities. Here we show that also for $n=\text{even}$, where inversion symmetry is present and valley polarization physics is strictly absent, such intrinsic selectivity in CP is to be expected on the basis of fundamental spin-orbit physics. First-principles calculations of CP predict significant polarization for $n=2$ bilayers: from 69% in ${\mathrm{MoS}}_{2}$ to 93% in ${\mathrm{WS}}_{2}$. This realization could broaden the range of materials to be considered as CP sources.

43 citations

Journal ArticleDOI
TL;DR: In this paper, a layer-by-layer growth model was fit to the observed cross-sectional scanning tunneling microscopy (STM) profiles, extracting surface-to-subsurface atomic exchange energies.
Abstract: Largely because of the lack of detailed microscopic information on the interfacial morphology, most electronic structure calculations on superlattices and quantum wells assume abrupt interfaces. Cross-sectional scanning tunneling microscopy (STM) measurements have now resolved atomic features of segregated interfaces. We fit a layer-by-layer growth model to the observed STM profiles, extracting surface-to-subsurface atomic exchange energies. These are then used to obtain a detailed simulated model of segregated InAs/GaSb superlattices with atomic resolution. Applying pseudopotential calculations to such structures reveals remarkable electronic consequences of segregation, including a blueshift of interband transitions, lowering of polarization anisotropy, and reduction of the amplitude of heavy-hole wave functions at the inverted interface.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition, and a detailed analysis of the local structural properties and their changes induced by an annealing process is reported.
Abstract: We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal--amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-temperature density-functional theory of the one-electron states, (b) exact energy minimization and hence calculation of the exact Hellmann-Feynman forces after each molecular-dynamics step using preconditioned conjugate-gradient techniques, (c) accurate nonlocal pseudopotentials, and (d) Nos\'e dynamics for generating a canonical ensemble. This method gives perfect control of the adiabaticity of the electron-ion ensemble and allows us to perform simulations over more than 30 ps. The computer-generated ensemble describes the structural, dynamic, and electronic properties of liquid and amorphous Ge in very good agreement with experiment. The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition. We report a detailed analysis of the local structural properties and their changes induced by an annealing process. The geometrical, bonding, and spectral properties of defects in the disordered tetrahedral network are investigated and compared with experiment.

16,744 citations

Journal ArticleDOI
TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.
Abstract: The exact density functional for the ground-state energy is strictly self-interaction-free (i.e., orbitals demonstrably do not self-interact), but many approximations to it, including the local-spin-density (LSD) approximation for exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any density functional for the energy; correction of the self-consistent one-electron potenial follows naturally from the variational principle. Both methods are sanctioned by the Hohenberg-Kohn theorem. Although the first method introduces an orbital-dependent single-particle potential, the second involves a local potential as in the Kohn-Sham scheme. We apply the first method to LSD and show that it properly conserves the number content of the exchange-correlation hole, while substantially improving the description of its shape. We apply this method to a number of physical problems, where the uncorrected LSD approach produces systematic errors. We find systematic improvements, qualitative as well as quantitative, from this simple correction. Benefits of SIC in atomic calculations include (i) improved values for the total energy and for the separate exchange and correlation pieces of it, (ii) accurate binding energies of negative ions, which are wrongly unstable in LSD, (iii) more accurate electron densities, (iv) orbital eigenvalues that closely approximate physical removal energies, including relaxation, and (v) correct longrange behavior of the potential and density. It appears that SIC can also remedy the LSD underestimate of the band gaps in insulators (as shown by numerical calculations for the rare-gas solids and CuCl), and the LSD overestimate of the cohesive energies of transition metals. The LSD spin splitting in atomic Ni and $s\ensuremath{-}d$ interconfigurational energies of transition elements are almost unchanged by SIC. We also discuss the admissibility of fractional occupation numbers, and present a parametrization of the electron-gas correlation energy at any density, based on the recent results of Ceperley and Alder.

16,027 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations