scispace - formally typeset
Search or ask a question
Author

Alexander Braylan

Bio: Alexander Braylan is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Artificial neural network & General video game playing. The author has an hindex of 5, co-authored 8 publications receiving 197 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The successes of neural IR thus far are highlighted, obstacles to its wider adoption are cataloged, and potentially promising directions for future research are suggested.
Abstract: A recent “third wave” of neural network (NN) approaches now delivers state-of-the-art performance in many machine learning tasks, spanning speech recognition, computer vision, and natural language processing. Because these modern NNs often comprise multiple interconnected layers, work in this area is often referred to as deep learning. Recent years have witnessed an explosive growth of research into NN-based approaches to information retrieval (IR). A significant body of work has now been created. In this paper, we survey the current landscape of Neural IR research, paying special attention to the use of learned distributed representations of textual units. We highlight the successes of neural IR thus far, catalog obstacles to its wider adoption, and suggest potentially promising directions for future research.

124 citations

Posted Content
TL;DR: The current landscape of Neural IR research is surveyed, paying special attention to the use of learned representations of queries and documents (i.e., neural embeddings), to highlight the successes and obstacles to its wider adoption, and suggest potentially promising directions for future research.
Abstract: A recent "third wave" of Neural Network (NN) approaches now delivers state-of-the-art performance in many machine learning tasks, spanning speech recognition, computer vision, and natural language processing. Because these modern NNs often comprise multiple interconnected layers, this new NN research is often referred to as deep learning. Stemming from this tide of NN work, a number of researchers have recently begun to investigate NN approaches to Information Retrieval (IR). While deep NNs have yet to achieve the same level of success in IR as seen in other areas, the recent surge of interest and work in NNs for IR suggest that this state of affairs may be quickly changing. In this work, we survey the current landscape of Neural IR research, paying special attention to the use of learned representations of queries and documents (i.e., neural embeddings). We highlight the successes of neural IR thus far, catalog obstacles to its wider adoption, and suggest potentially promising directions for future research.

45 citations

Proceedings Article
12 Feb 2016
TL;DR: In this article, a general approach to knowledge transfer is introduced in which an agent controlled by a neural network adapts how it reuses existing networks as it learns in a new domain.
Abstract: A general approach to knowledge transfer is introduced in which an agent controlled by a neural network adapts how it reuses existing networks as it learns in a new domain. Networks trained for a new domain can improve their performance by routing activation selectively through previously learned neural structure, regardless of how or for what it was learned. A neuroevolution implementation of this approach is presented with application to high-dimensional sequential decision-making domains. This approach is more general than previous approaches to neural transfer for reinforcement learning. It is domain-agnostic and requires no prior assumptions about the nature of task relatedness or mappings. The method is analyzed in a stochastic version of the Arcade Learning Environment, demonstrating that it improves performance in some of the more complex Atari 2600 games, and that the success of transfer can be predicted based on a high-level characterization of game dynamics.

20 citations

Posted Content
TL;DR: A general approach to knowledge transfer is introduced in which an agent controlled by a neural network adapts how it reuses existing networks as it learns in a new domain, which is domain-agnostic and requires no prior assumptions about the nature of task relatedness or mappings.
Abstract: A general approach to knowledge transfer is introduced in which an agent controlled by a neural network adapts how it reuses existing networks as it learns in a new domain. Networks trained for a new domain can improve their performance by routing activation selectively through previously learned neural structure, regardless of how or for what it was learned. A neuroevolution implementation of this approach is presented with application to high-dimensional sequential decision-making domains. This approach is more general than previous approaches to neural transfer for reinforcement learning. It is domain-agnostic and requires no prior assumptions about the nature of task relatedness or mappings. The method is analyzed in a stochastic version of the Arcade Learning Environment, demonstrating that it improves performance in some of the more complex Atari 2600 games, and that the success of transfer can be predicted based on a high-level characterization of game dynamics.

16 citations

Proceedings ArticleDOI
19 Sep 2016
TL;DR: A transfer learning approach is presented to address the challenge of training video game agents with limited data and shows that the approach improves prediction accuracy over a comparable control, leading to more efficient exploration.
Abstract: A transfer learning approach is presented to address the challenge of training video game agents with limited data. The approach decomposes games into objects, learns object models, and transfers models from known games to unfamiliar games to guide learning. Experiments show that the approach improves prediction accuracy over a comparable control, leading to more efficient exploration. Training of game agents is thus accelerated by transferring object models from previously learned games.

15 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: The authors decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained.
Abstract: Visual question answering is fundamentally compositional in nature—a question like where is the dog? shares substructure with questions like what color is the dog? and where is the cat? This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning neural module networks, which compose collections of jointly-trained neural "modules" into deep networks for question answering. Our approach decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained. We evaluate our approach on two challenging datasets for visual question answering, achieving state-of-the-art results on both the VQA natural image dataset and a new dataset of complex questions about abstract shapes.

942 citations

Posted Content
TL;DR: This work discusses core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration, and important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn.
Abstract: We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions. Please see Deep Reinforcement Learning, arXiv:1810.06339, for a significant update.

935 citations

Posted Content
TL;DR: The authors decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.) for visual question answering.
Abstract: Visual question answering is fundamentally compositional in nature---a question like "where is the dog?" shares substructure with questions like "what color is the dog?" and "where is the cat?" This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning *neural module networks*, which compose collections of jointly-trained neural "modules" into deep networks for question answering. Our approach decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained. We evaluate our approach on two challenging datasets for visual question answering, achieving state-of-the-art results on both the VQA natural image dataset and a new dataset of complex questions about abstract shapes.

483 citations

Posted Content
TL;DR: A comprehensive review of 62 state-of-the-art robust training methods, all of which are categorized into five groups according to their methodological difference, followed by a systematic comparison of six properties used to evaluate their superiority.
Abstract: Deep learning has achieved remarkable success in numerous domains with help from large amounts of big data. However, the quality of data labels is a concern because of the lack of high-quality labels in many real-world scenarios. As noisy labels severely degrade the generalization performance of deep neural networks, learning from noisy labels (robust training) is becoming an important task in modern deep learning applications. In this survey, we first describe the problem of learning with label noise from a supervised learning perspective. Next, we provide a comprehensive review of 46 state-of-the-art robust training methods, all of which are categorized into seven groups according to their methodological difference, followed by a systematic comparison of six properties used to evaluate their superiority. Subsequently, we summarize the typically used evaluation methodology, including public noisy datasets and evaluation metrics. Finally, we present several promising research directions that can serve as a guideline for future studies.

474 citations