scispace - formally typeset
Search or ask a question
Author

Alexander C. Berg

Other affiliations: Facebook, Stanford University, Columbia University  ...read more
Bio: Alexander C. Berg is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Object detection & Natural language. The author has an hindex of 57, co-authored 109 publications receiving 67829 citations. Previous affiliations of Alexander C. Berg include Facebook & Stanford University.


Papers
More filters
Proceedings ArticleDOI
05 Jan 2015
TL;DR: This paper's contributions include collecting a new runway dataset, designing features suitable for capturing outfit appearance, collecting human judgments of outfit similarity, and learning similarity functions on the features to mimic those judgments.
Abstract: Clothing and fashion are an integral part of our everyday lives. In this paper we present an approach to studying fashion both on the runway and in more real-world settings, computationally, and at large scale, using computer vision. Our contributions include collecting a new runway dataset, designing features suitable for capturing outfit appearance, collecting human judgments of outfit similarity, and learning similarity functions on the features to mimic those judgments. We provide both intrinsic and extrinsic evaluations of our learned models to assess performance on outfit similarity prediction as well as season, year, and brand estimation. An example application tracks visual trends as runway fashions filter down to "real way" street fashions.

115 citations

Posted Content
TL;DR: This paper improves training for the state-of-the-art single-shot detector, RetinaNet, in three ways: integrating instance mask prediction for the first time, making the loss function adaptive and more stable, and including additional hard examples in training.
Abstract: Recently two-stage detectors have surged ahead of single-shot detectors in the accuracy-vs-speed trade-off. Nevertheless single-shot detectors are immensely popular in embedded vision applications. This paper brings single-shot detectors up to the same level as current two-stage techniques. We do this by improving training for the state-of-the-art single-shot detector, RetinaNet, in three ways: integrating instance mask prediction for the first time, making the loss function adaptive and more stable, and including additional hard examples in training. We call the resulting augmented network RetinaMask. The detection component of RetinaMask has the same computational cost as the original RetinaNet, but is more accurate. COCO test-dev results are up to 41.4 mAP for RetinaMask-101 vs 39.1mAP for RetinaNet-101, while the runtime is the same during evaluation. Adding Group Normalization increases the performance of RetinaMask-101 to 41.7 mAP. Code is at:this https URL

114 citations

Posted Content
TL;DR: A new dataset consisting of 360,001 focused natural language descriptions for 10,738 images is introduced and its applicability to two new description generation tasks: focused description generation, and multiple-choice question-answering for images is demonstrated.
Abstract: In this paper, we introduce a new dataset consisting of 360,001 focused natural language descriptions for 10,738 images. This dataset, the Visual Madlibs dataset, is collected using automatically produced fill-in-the-blank templates designed to gather targeted descriptions about: people and objects, their appearances, activities, and interactions, as well as inferences about the general scene or its broader context. We provide several analyses of the Visual Madlibs dataset and demonstrate its applicability to two new description generation tasks: focused description generation, and multiple-choice question-answering for images. Experiments using joint-embedding and deep learning methods show promising results on these tasks.

109 citations

Proceedings ArticleDOI
19 Sep 2016
TL;DR: In this paper, the authors combine detection and pose estimation at the same level using a deep learning approach, where scores for the presence of an object category, the offset for its location, and the approximate pose are all estimated on a regular grid of locations in the image.
Abstract: For applications in navigation and robotics, estimating the 3D pose of objects is as important as detection. Many approaches to pose estimation rely on detecting or tracking parts or keypoints [11, 21]. In this paper we build on a recent state-of-the-art convolutional network for slidingwindow detection [10] to provide detection and rough pose estimation in a single shot, without intermediate stages of detecting parts or initial bounding boxes. While not the first system to treat pose estimation as a categorization problem, this is the first attempt to combine detection and pose estimation at the same level using a deep learning approach. The key to the architecture is a deep convolutional network where scores for the presence of an object category, the offset for its location, and the approximate pose are all estimated on a regular grid of locations in the image. The resulting system is as accurate as recent work on pose estimation (42.4% 8 View mAVP on Pascal 3D+ [21] ) and significantly faster (46 frames per second (FPS) on a TITAN X GPU). This approach to detection and rough pose estimation is fast and accurate enough to be widely applied as a pre-processing step for tasks including high-accuracy pose estimation, object tracking and localization, and vSLAM.

105 citations

Posted Content
TL;DR: This paper improves state-of-the-art visual object trackers that use online adaptation by using an offline meta-learning-based method to adjust the initial deep networks used in online adaptation-based tracking.
Abstract: This paper improves state-of-the-art visual object trackers that use online adaptation. Our core contribution is an offline meta-learning-based method to adjust the initial deep networks used in online adaptation-based tracking. The meta learning is driven by the goal of deep networks that can quickly be adapted to robustly model a particular target in future frames. Ideally the resulting models focus on features that are useful for future frames, and avoid overfitting to background clutter, small parts of the target, or noise. By enforcing a small number of update iterations during meta-learning, the resulting networks train significantly faster. We demonstrate this approach on top of the high performance tracking approaches: tracking-by-detection based MDNet and the correlation based CREST. Experimental results on standard benchmarks, OTB2015 and VOT2016, show that our meta-learned versions of both trackers improve speed, accuracy, and robustness.

99 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations