scispace - formally typeset
Search or ask a question
Author

Alexander C. Berg

Other affiliations: Facebook, Stanford University, Columbia University  ...read more
Bio: Alexander C. Berg is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Object detection & Natural language. The author has an hindex of 57, co-authored 109 publications receiving 67829 citations. Previous affiliations of Alexander C. Berg include Facebook & Stanford University.


Papers
More filters
Journal ArticleDOI
TL;DR: The end result is two simple, but effective, methods for harnessing the power of big data to produce image captions that are altogether more general, relevant, and human-like than previous attempts.
Abstract: What is the story of an image? What is the relationship between pictures, language, and information we can extract using state of the art computational recognition systems? In an attempt to address both of these questions, we explore methods for retrieving and generating natural language descriptions for images. Ideally, we would like our generated textual descriptions (captions) to both sound like a person wrote them, and also remain true to the image content. To do this we develop data-driven approaches for image description generation, using retrieval-based techniques to gather either: (a) whole captions associated with a visually similar image, or (b) relevant bits of text (phrases) from a large collection of image + description pairs. In the case of (b), we develop optimization algorithms to merge the retrieved phrases into valid natural language sentences. The end result is two simple, but effective, methods for harnessing the power of big data to produce image captions that are altogether more general, relevant, and human-like than previous attempts.

72 citations

Proceedings ArticleDOI
26 Dec 2007
TL;DR: The approach is driven by recognition of generic classes of visual appearance, e.g. for foliage, to boot-strap an image specific model that provides refined estimates to use for matting, segmentation, and more detailed parsing.
Abstract: We address image parsing in the setting of architectural scenes. Our goal is to parse an image into regions of various types such as sky, foliage, buildings, and street. Furthermore we parse the building regions at a finer level of detail, identifying the positions of windows, doors, and rooflines, the colors of walls, and the spatial extent of particular buildings. Recognizing these individual elements is often impossible without the context provided by the initial parsing of the image, for instance a roofline is only defined in relation to the building below and the sky above. Our approach is driven by recognition of generic classes of visual appearance, e.g. for foliage. The generic recognition results boot-strap an image specific model that provides refined estimates to use for matting, segmentation, and more detailed parsing.

62 citations

Proceedings Article
03 Jun 2012
TL;DR: This work concretely defines what it means to be visual, annotate visual text and develops algorithms to automatically classify noun phrases as visual or non-visual, and finds that using text alone, it is able to achieve high accuracies at this task, and that incorporating features derived from computer vision algorithms improves performance.
Abstract: When people describe a scene, they often include information that is not visually apparent; sometimes based on background knowledge, sometimes to tell a story. We aim to separate visual text---descriptions of what is being seen---from non-visual text in natural images and their descriptions. To do so, we first concretely define what it means to be visual, annotate visual text and then develop algorithms to automatically classify noun phrases as visual or non-visual. We find that using text alone, we are able to achieve high accuracies at this task, and that incorporating features derived from computer vision algorithms improves performance. Finally, we show that we can reliably mine visual nouns and adjectives from large corpora and that we can use these effectively in the classification task.

53 citations

Journal ArticleDOI
TL;DR: The state of the art for low-power solutions to detect objects in images is examined to suggest directions for research as well as opportunities forLow-power computer vision.
Abstract: Computer vision has achieved impressive progress in recent years. Meanwhile, mobile phones have become the primary computing platforms for millions of people. In addition to mobile phones, many autonomous systems rely on visual data for making decisions, and some of these systems have limited energy (such as unmanned aerial vehicles also called drones and mobile robots). These systems rely on batteries, and energy efficiency is critical. This paper serves the following two main purposes. First, examine the state of the art for low-power solutions to detect objects in images. Since 2015, the IEEE Annual International Low-Power Image Recognition Challenge (LPIRC) has been held to identify the most energy-efficient computer vision solutions. This paper summarizes the 2018 winners’ solutions. Second, suggest directions for research as well as opportunities for low-power computer vision.

48 citations

Journal ArticleDOI
TL;DR: Results from multi-voxel pattern analysis (MVPA) showed that the spatial response patterns of both regions can be used to differentiate the selected picture category in working memory, and their spatial activation patterns during selective maintenance seem to match those during visual recognition.

39 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations