scispace - formally typeset
Search or ask a question
Author

Alexander C. Berg

Other affiliations: Facebook, Stanford University, Columbia University  ...read more
Bio: Alexander C. Berg is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Object detection & Natural language. The author has an hindex of 57, co-authored 109 publications receiving 67829 citations. Previous affiliations of Alexander C. Berg include Facebook & Stanford University.


Papers
More filters
Proceedings ArticleDOI
20 Jun 2005
TL;DR: This work approaches recognition in the framework of deformable shape matching, relying on a new algorithm for finding correspondences between feature points, and shows results for localizing frontal and profile faces that are comparable to special purpose approaches tuned to faces.
Abstract: We approach recognition in the framework of deformable shape matching, relying on a new algorithm for finding correspondences between feature points. This algorithm sets up correspondence as an integer quadratic programming problem, where the cost function has terms based on similarity of corresponding geometric blur point descriptors as well as the geometric distortion between pairs of corresponding feature points. The algorithm handles outliers, and thus enables matching of exemplars to query images in the presence of occlusion and clutter. Given the correspondences, we estimate an aligning transform, typically a regularized thin plate spline, resulting in a dense correspondence between the two shapes. Object recognition is then handled in a nearest neighbor framework where the distance between exemplar and query is the matching cost between corresponding points. We show results on two datasets. One is the Caltech 101 dataset (Fei-Fei, Fergus and Perona), an extremely challenging dataset with large intraclass variation. Our approach yields a 48% correct classification rate, compared to Fei-Fei et al 's 16%. We also show results for localizing frontal and profile faces that are comparable to special purpose approaches tuned to faces.

975 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: A unified approach to combining feature computation and similarity networks for training a patch matching system that improves accuracy over previous state-of-the-art results on patch matching datasets, while reducing the storage requirement for descriptors is confirmed.
Abstract: Motivated by recent successes on learning feature representations and on learning feature comparison functions, we propose a unified approach to combining both for training a patch matching system. Our system, dubbed Match-Net, consists of a deep convolutional network that extracts features from patches and a network of three fully connected layers that computes a similarity between the extracted features. To ensure experimental repeatability, we train MatchNet on standard datasets and employ an input sampler to augment the training set with synthetic exemplar pairs that reduce overfitting. Once trained, we achieve better computational efficiency during matching by disassembling MatchNet and separately applying the feature computation and similarity networks in two sequential stages. We perform a comprehensive set of experiments on standard datasets to carefully study the contributions of each aspect of MatchNet, with direct comparisons to established methods. Our results confirm that our unified approach improves accuracy over previous state-of-the-art results on patch matching datasets, while reducing the storage requirement for descriptors. We make pre-trained MatchNet publicly available.

840 citations

Journal ArticleDOI
TL;DR: The proposed system to automatically generate natural language descriptions from images is very effective at producing relevant sentences for images and generates descriptions that are notably more true to the specific image content than previous work.
Abstract: We present a system to automatically generate natural language descriptions from images. This system consists of two parts. The first part, content planning, smooths the output of computer vision-based detection and recognition algorithms with statistics mined from large pools of visually descriptive text to determine the best content words to use to describe an image. The second step, surface realization, chooses words to construct natural language sentences based on the predicted content and general statistics from natural language. We present multiple approaches for the surface realization step and evaluate each using automatic measures of similarity to human generated reference descriptions. We also collect forced choice human evaluations between descriptions from the proposed generation system and descriptions from competing approaches. The proposed system is very effective at producing relevant sentences for images. It also generates descriptions that are notably more true to the specific image content than previous work.

791 citations

Proceedings ArticleDOI
20 Jun 2011
TL;DR: A system to automatically generate natural language descriptions from images that exploits both statistics gleaned from parsing large quantities of text data and recognition algorithms from computer vision that is very effective at producing relevant sentences for images.
Abstract: We posit that visually descriptive language offers computer vision researchers both information about the world, and information about how people describe the world. The potential benefit from this source is made more significant due to the enormous amount of language data easily available today. We present a system to automatically generate natural language descriptions from images that exploits both statistics gleaned from parsing large quantities of text data and recognition algorithms from computer vision. The system is very effective at producing relevant sentences for images. It also generates descriptions that are notably more true to the specific image content than previous work.

564 citations

Book ChapterDOI
05 Sep 2010
TL;DR: A study of large scale categorization including a series of challenging experiments on classification with more than 10,000 image classes finds that computational issues become crucial in algorithm design and conventional wisdom from a couple of hundred image categories does not necessarily hold when the number of categories increases.
Abstract: Image classification is a critical task for both humans and computers. One of the challenges lies in the large scale of the semantic space. In particular, humans can recognize tens of thousands of object classes and scenes. No computer vision algorithm today has been tested at this scale. This paper presents a study of large scale categorization including a series of challenging experiments on classification with more than 10, 000 image classes. We find that a) computational issues become crucial in algorithm design; b) conventional wisdom from a couple of hundred image categories on relative performance of different classifiers does not necessarily hold when the number of categories increases; c) there is a surprisingly strong relationship between the structure of WordNet (developed for studying language) and the difficulty of visual categorization; d) classification can be improved by exploiting the semantic hierarchy. Toward the future goal of developing automatic vision algorithms to recognize tens of thousands or even millions of image categories, we make a series of observations and arguments about dataset scale, category density, and image hierarchy.

559 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations