scispace - formally typeset
Search or ask a question
Author

Alexander C. Berg

Other affiliations: Facebook, Stanford University, Columbia University  ...read more
Bio: Alexander C. Berg is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Object detection & Natural language. The author has an hindex of 57, co-authored 109 publications receiving 67829 citations. Previous affiliations of Alexander C. Berg include Facebook & Stanford University.


Papers
More filters
Proceedings ArticleDOI
07 Dec 2015
TL;DR: Three different methods for Exact Street to Shop retrieval are developed, including two deep learning baseline methods, and a method to learn a similarity measure between the street and shop domains.
Abstract: In this paper, we define a new task, Exact Street to Shop, where our goal is to match a real-world example of a garment item to the same item in an online shop. This is an extremely challenging task due to visual differences between street photos (pictures of people wearing clothing in everyday uncontrolled settings) and online shop photos (pictures of clothing items on people, mannequins, or in isolation, captured by professionals in more controlled settings). We collect a new dataset for this application containing 404,683 shop photos collected from 25 different online retailers and 20,357 street photos, providing a total of 39,479 clothing item matches between street and shop photos. We develop three different methods for Exact Street to Shop retrieval, including two deep learning baseline methods, and a method to learn a similarity measure between the street and shop domains. Experiments demonstrate that our learned similarity significantly outperforms our baselines that use existing deep learning based representations.

480 citations

Proceedings Article
23 Apr 2012
TL;DR: A novel generation system that composes humanlike descriptions of images from computer vision detections by leveraging syntactically informed word co-occurrence statistics and automatically generating some of the most natural image descriptions to date.
Abstract: This paper introduces a novel generation system that composes humanlike descriptions of images from computer vision detections. By leveraging syntactically informed word co-occurrence statistics, the generator filters and constrains the noisy detections output from a vision system to generate syntactic trees that detail what the computer vision system sees. Results show that the generation system outperforms state-of-the-art systems, automatically generating some of the most natural image descriptions to date.

450 citations

Proceedings ArticleDOI
27 Jun 2004
TL;DR: It is shown quite good face clustering is possible for a dataset of inaccurately and ambiguously labelled face images, obtained by applying a face finder to approximately half a million captioned news images.
Abstract: We show quite good face clustering is possible for a dataset of inaccurately and ambiguously labelled face images. Our dataset is 44,773 face images, obtained by applying a face finder to approximately half a million captioned news images. This dataset is more realistic than usual face recognition datasets, because it contains faces captured "in the wild" in a variety of configurations with respect to the camera, taking a variety of expressions, and under illumination of widely varying color. Each face image is associated with a set of names, automatically extracted from the associated caption. Many, but not all such sets contain the correct name. We cluster face images in appropriate discriminant coordinates. We use a clustering procedure to break ambiguities in labelling and identify incorrectly labelled faces. A merging procedure then identifies variants of names that refer to the same individual. The resulting representation can be used to label faces in news images or to organize news pictures by individuals present. An alternative view of our procedure is as a process that cleans up noisy supervised data. We demonstrate how to use entropy measures to evaluate such procedures.

392 citations

Book ChapterDOI
08 Oct 2016
TL;DR: This article explored generating and comprehending natural language referring expressions for objects in images and found that visual comparison to other objects within an image helps improve performance significantly, and developed methods to tie the language generation process together, so that they generate expressions for all objects of a particular category jointly.
Abstract: Humans refer to objects in their environments all the time, especially in dialogue with other people. We explore generating and comprehending natural language referring expressions for objects in images. In particular, we focus on incorporating better measures of visual context into referring expression models and find that visual comparison to other objects within an image helps improve performance significantly. We also develop methods to tie the language generation process together, so that we generate expressions for all objects of a particular category jointly. Evaluation on three recent datasets - RefCOCO, RefCOCO+, and RefCOCOg (Datasets and toolbox can be downloaded from https://github.com/lichengunc/refer), shows the advantages of our methods for both referring expression generation and comprehension.

390 citations

Proceedings Article
23 Jun 2011
TL;DR: A simple yet effective approach to automatically compose image descriptions given computer vision based inputs and using web-scale n-grams, which indicates that it is viable to generate simple textual descriptions that are pertinent to the specific content of an image, while permitting creativity in the description -- making for more human-like annotations than previous approaches.
Abstract: Studying natural language, and especially how people describe the world around them can help us better understand the visual world. In turn, it can also help us in the quest to generate natural language that describes this world in a human manner. We present a simple yet effective approach to automatically compose image descriptions given computer vision based inputs and using web-scale n-grams. Unlike most previous work that summarizes or retrieves pre-existing text relevant to an image, our method composes sentences entirely from scratch. Experimental results indicate that it is viable to generate simple textual descriptions that are pertinent to the specific content of an image, while permitting creativity in the description -- making for more human-like annotations than previous approaches.

371 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations