scispace - formally typeset
Search or ask a question
Author

Alexander C. Schütz

Other affiliations: Philips, University of Giessen
Bio: Alexander C. Schütz is an academic researcher from University of Marburg. The author has contributed to research in topics: Smooth pursuit & Saccadic masking. The author has an hindex of 20, co-authored 94 publications receiving 1714 citations. Previous affiliations of Alexander C. Schütz include Philips & University of Giessen.


Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that, like for many other aspects of vision, several different circuits related to salience, object recognition, actions, and value ultimately interact to determine gaze behavior.
Abstract: Eye movements are an integral and essential part of our human foveated vision system. Here, we review recent work on voluntary eye movements, with an emphasis on the last decade. More selectively, we address two of the most important questions about saccadic and smooth pursuit eye movements in natural vision. First, why do we saccade to where we do? We argue that, like for many other aspects of vision, several different circuits related to salience, object recognition, actions, and value ultimately interact to determine gaze behavior. Second, how are pursuit eye movements and perceptual experience of visual motion related? We show that motion perception and pursuit have a lot in common, but they also have separate noise sources that can lead to dissociations between them. We emphasize the point that pursuit actively modulates visual perception and that it can provide valuable information for motion perception.

336 citations

Journal ArticleDOI
TL;DR: Only a target shape which looks like a combination of bulls eye and cross hair resulted in combined low dispersion and microsaccade rate, and this shape is recommended as fixation target shape for experiments that require stable fixation.

256 citations

Journal ArticleDOI
TL;DR: In both fixation and pursuit trials, prediction performance was better when eye movements were accurate, and an efference copy signal might provide additional motion information, leading to the advantage in motion prediction.
Abstract: Success of motor behavior often depends on the ability to predict the path of moving objects. Here we asked whether tracking a visual object with smooth pursuit eye movements helps to predict its m...

112 citations

Journal ArticleDOI
TL;DR: The findings show that the human visual system can effectively use peripheral and foveal information about object features and that visual perception does not simply correspond to disconnected snapshots during each fixation.
Abstract: Due to the inhomogenous visual representation across the visual field, humans use peripheral vision to select objects of interest and foveate them by saccadic eye movements for further scrutiny. Thus, there is usually peripheral information available before and foveal information after a saccade. In this study we investigated the integration of information across saccades. We measured reliabilities--i.e., the inverse of variance-separately in a presaccadic peripheral and a postsaccadic foveal orientation--discrimination task. From this, we predicted trans-saccadic performance and compared it to observed values. We show that the integration of incongruent peripheral and foveal information is biased according to their relative reliabilities and that the reliability of the trans-saccadic information equals the sum of the peripheral and foveal reliabilities. Both results are consistent with and indistinguishable from statistically optimal integration according to the maximum-likelihood principle. Additionally, we tracked the gathering of information around the time of the saccade with high temporal precision by using a reverse correlation method. Information gathering starts to decline between 100 and 50 ms before saccade onset and recovers immediately after saccade offset. Altogether, these findings show that the human visual system can effectively use peripheral and foveal information about object features and that visual perception does not simply correspond to disconnected snapshots during each fixation.

103 citations

Journal ArticleDOI
TL;DR: It is shown that both salience and value information influence the saccadic end point within an object, but with different time courses, and this model supports the notion of independent neural pathways for the processing of visual information and value.
Abstract: Humans shift their gaze to a new location several times per second. It is still unclear what determines where they look next. Fixation behavior is influenced by the low-level salience of the visual stimulus, such as luminance, contrast, and color, but also by high-level task demands and prior knowledge. Under natural conditions, different sources of information might conflict with each other and have to be combined. In our paradigm, we trade off visual salience against expected value. We show that both salience and value information influence the saccadic end point within an object, but with different time courses. The relative weights of salience and value are not constant but vary from eye movement to eye movement, depending critically on the availability of the value information at the time when the saccade is programmed. Short-latency saccades are determined mainly by salience, but value information is taken into account for long-latency saccades. We present a model that describes these data by dynamically weighting and integrating detailed topographic maps of visual salience and value. These results support the notion of independent neural pathways for the processing of visual information and value.

103 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors propose that the brain produces an internal representation of the world, and the activation of this internal representation is assumed to give rise to the experience of seeing, but it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness.
Abstract: Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual \"filling in,\" visual stability despite eye movements, change blindness, sensory substitution, and color perception.

2,271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors offer a new book that enPDFd the perception of the visual world to read, which they call "Let's Read". But they do not discuss how to read it.
Abstract: Let's read! We will often find out this sentence everywhere. When still being a kid, mom used to order us to always read, so did the teacher. Some books are fully read in a week and we need the obligation to support reading. What about now? Do you still love reading? Is reading only for you who have obligation? Absolutely not! We here offer you a new book enPDFd the perception of the visual world to read.

2,250 citations

Book ChapterDOI
11 Dec 2012

1,704 citations

01 Jan 1998
TL;DR: The lateral intraparietal area (LIP) as mentioned in this paper has been shown to have visual responses to stimuli appearing abruptly at particular retinal locations (their receptive fields) and the visual representation in LIP is sparse, with only the most salient or behaviourally relevant objects being strongly represented.
Abstract: When natural scenes are viewed, a multitude of objects that are stable in their environments are brought in and out of view by eye movements. The posterior parietal cortex is crucial for the analysis of space, visual attention and movement 1 . Neurons in one of its subdivisions, the lateral intraparietal area (LIP), have visual responses to stimuli appearing abruptly at particular retinal locations (their receptive fields)2. We have tested the responses of LIP neurons to stimuli that entered their receptive field by saccades. Neurons had little or no response to stimuli brought into their receptive field by saccades, unless the stimuli were behaviourally significant. We established behavioural significance in two ways: either by making a stable stimulus task-relevant, or by taking advantage of the attentional attraction of an abruptly appearing stimulus. Our results show that under ordinary circumstances the entire visual world is only weakly represented in LIP. The visual representation in LIP is sparse, with only the most salient or behaviourally relevant objects being strongly represented.

1,007 citations