scispace - formally typeset
Search or ask a question
Author

Alexander Christmann

Bio: Alexander Christmann is an academic researcher from Technische Universität München. The author has contributed to research in topics: Abscisic acid & Arabidopsis. The author has an hindex of 18, co-authored 23 publications receiving 4268 citations.

Papers
More filters
Journal ArticleDOI
22 May 2009-Science
TL;DR: This study identifies interactors of ABI1 and ABI2 which are named regulatory components of ABA receptor (RCARs) in Arabidopsis and suggests that the ABA receptors may be a class of closely related complexes, which may explain previous difficulties in establishing its identity.
Abstract: The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.

1,854 citations

Journal ArticleDOI
TL;DR: This work has shown a unique hormone perception mechanism where binding of ABA to the ABA receptors RCARs/PYR1/PYLs leads to inactivation of type 2C protein phosphatases such as ABI1 and ABI2 which targets ABA-dependent gene expression and ion channels.

1,031 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the shoot response to limited soil water supply is not affected by the capacity to generate ABA in the root; however, the response does require ABA biosynthesis and signalling in the shoot.
Abstract: Photosynthesis and biomass production of plants are controlled by the water status of the soil. Upon soil drying, plants can reduce water consumption by minimizing transpiration through stomata, the closable pores of the leaf. The phytohormone abscisic acid (ABA) mediates stomatal closure, and is the assigned signal for communicating water deficit from the root to the shoot. However, our study does not support ABA as the proposed long-distance signal. The shoot response to limited soil water supply is not affected by the capacity to generate ABA in the root; however, the response does require ABA biosynthesis and signalling in the shoot. Soil water stress elicits a hydraulic response in the shoot, which precedes ABA signalling and stomatal closure. Attenuation of the hydraulic response in various plants prevented long-distance signalling of water stress, consistent with root-to-shoot communication by a hydraulic signal.

498 citations

Journal ArticleDOI
TL;DR: Water stress recognized by the root system predominantly results in shoot-localized ABA action that culminates in a focused response in guard cells, revealing a spread of physiologically active ABA from the vascular tissue into the areoles of the cotyledons.
Abstract: A noninvasive, cell-autonomous reporter system was developed to monitor the generation and distribution of physiologically active pools of abscisic acid (ABA). ABA response (abi1-1) and biosynthesis (aba2-1) mutants of Arabidopsis (Arabidopsis thaliana) were used to validate the system in the presence and absence of water stress. In the absence of water stress, low levels of ABA-dependent reporter activation were observed in the columella cells and quiescent center of the root as well as in the vascular tissues and stomata of cotyledons, suggesting a nonstress-related role for ABA in these cell types. Exposure of seedlings to exogenous ABA resulted in a uniform pattern of reporter expression. In marked contrast, reporter expression in response to drought stress was predominantly confined to the vasculature and stomata. Surprisingly, water stress applied to the root system resulted in the generation of ABA pools in the shoot but not in the root. The analysis of the response dynamics revealed a spread of physiologically active ABA from the vascular tissue into the areoles of the cotyledons. Later, ABA preferentially activated gene expression in guard cells. The primary sites of ABA action identified by in planta imaging corresponded to the sites of ABA biosynthesis, i.e. guard cells and cells associated with vascular veins. Hence, water stress recognized by the root system predominantly results in shoot-localized ABA action that culminates in a focused response in guard cells.

253 citations

Journal ArticleDOI
TL;DR: Despite the missing unifying concept, it is becoming clear that ABA action enforces a sophisticated regulation at all levels.
Abstract: The phytohormone abscisic acid (ABA) plays a major role as an endogenous messenger in the regulation of plant's water status. ABA is generated as a signal during a plant's life cycle to control seed germination and further developmental processes and in response to abiotic stress imposed by salt, cold, drought, and wounding. The action of ABA can target specifically guard cells for induction of stomatal closure but may also signal systemically for adjustment towards severe water shortage. At the molecular level, the responses are primarily mediated by regulation of ion channels and by changes in gene expression. In the last years, the molecular complexity of ABA signal transduction surfaced more and more. Many proteins and a plethora of "secondary" messengers that regulate or modulate ABA-responses have been identified by analysis of mutants including gene knock-out plants and by applying RNA interference technology together with protein interaction analysis. The complexity possibly reflects intensive cross-talk with other signal pathways and the role of ABA to be part of and to integrate several responses. Despite the missing unifying concept, it is becoming clear that ABA action enforces a sophisticated regulation at all levels.

234 citations


Cited by
More filters
Journal ArticleDOI
06 Oct 2016-Cell
TL;DR: Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing.

2,853 citations

Journal ArticleDOI
TL;DR: A new model for ABA action has been proposed and validated, in which the soluble PYR/PYL/RCAR receptors function at the apex of a negative regulatory pathway to directly regulate PP2C phosphatases, which in turn directly regulate SnRK2 kinases.
Abstract: Abscisic acid (ABA) regulates numerous developmental processes and adaptive stress responses in plants. Many ABA signaling components have been identified, but their interconnections and a consensus on the structure of the ABA signaling network have eluded researchers. Recently, several advances have led to the identification of ABA receptors and their three-dimensional structures, and an understanding of how key regulatory phosphatase and kinase activities are controlled by ABA. A new model for ABA action has been proposed and validated, in which the soluble PYR/PYL/RCAR receptors function at the apex of a negative regulatory pathway to directly regulate PP2C phosphatases, which in turn directly regulate SnRK2 kinases. This model unifies many previously defined signaling components and highlights the importance of future work focused on defining the direct targets of SnRK2s and PP2Cs, dissecting the mechanisms of hormone interactions (i.e., cross talk) and defining connections between this new negative regulatory pathway and other factors implicated in ABA signaling.

2,359 citations

Journal ArticleDOI
22 May 2009-Science
TL;DR: PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs, illustrating the power of the chemical genetic approach for sidestepping genetic redundancy.
Abstract: Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.

2,336 citations

Journal ArticleDOI
22 May 2009-Science
TL;DR: This study identifies interactors of ABI1 and ABI2 which are named regulatory components of ABA receptor (RCARs) in Arabidopsis and suggests that the ABA receptors may be a class of closely related complexes, which may explain previous difficulties in establishing its identity.
Abstract: The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.

1,854 citations

Journal ArticleDOI
TL;DR: Information about metabolic regulation in response to drought, extreme temperature, and salinity stress is summarized and the signalling events involved in mediating stress-induced metabolic changes are presented.
Abstract: Plants regularly face adverse growth conditions, such as drought, salinity, chilling, freezing, and high temperatures. These stresses can delay growth and development, reduce productivity, and, in extreme cases, cause plant death. Plant stress responses are dynamic and involve complex cross-talk between different regulatory levels, including adjustment of metabolism and gene expression for physiological and morphological adaptation. In this review, information about metabolic regulation in response to drought, extreme temperature, and salinity stress is summarized and the signalling events involved in mediating stress-induced metabolic changes are presented.

1,683 citations