scispace - formally typeset
Search or ask a question
Author

Alexander Clare

Bio: Alexander Clare is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Pulsar & Accretion (astrophysics). The author has an hindex of 2, co-authored 2 publications receiving 186 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated a model of the accreting millisecond X-ray pulsars and showed that the magnetic poles of these stars are close to their spin axes, and the gas is channeled along different field lines to different locations on the stellar surface.
Abstract: We investigate further a model of the accreting millisecond X-ray pulsars we proposed earlier. In this model, the X-ray-emitting regions of these pulsars are near their spin axes but move. This is to be expected if the magnetic poles of these stars are close to their spin axes, so that accreting gas is channeled there. As the accretion rate and the structure of the inner disk vary, gas is channeled along different field lines to different locations on the stellar surface, causing the X-ray-emitting areas to move. We show that this 'nearly aligned moving spot model' can explain many properties of the accreting millisecond X-ray pulsars, including their generally low oscillation amplitudes and nearly sinusoidal waveforms; the variability of their pulse amplitudes, shapes, and phases; the correlations in this variability; and the similarity of the accretion- and nuclear-powered pulse shapes and phases in some. It may also explain why accretion-powered millisecond pulsars are difficult to detect, why some are intermittent, and why all detected so far are transients. This model can be tested by comparing with observations the waveform changes it predicts, including the changes with accretion rate.

106 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated a model of the accreting millisecond X-ray pulsars and showed that the magnetic poles of these stars are close to their spin axes, and the gas is channeled along different field lines to different locations on the stellar surface.
Abstract: We investigate further a model of the accreting millisecond X-ray pulsars we proposed earlier. In this model, the X-ray-emitting regions of these pulsars are near their spin axes but move. This is to be expected if the magnetic poles of these stars are close to their spin axes, so that accreting gas is channeled there. As the accretion rate and the structure of the inner disk vary, gas is channeled along different field lines to different locations on the stellar surface, causing the X-ray-emitting areas to move. We show that this "nearly aligned moving spot model" can explain many properties of the accreting millisecond X-ray pulsars, including their generally low oscillation amplitudes and nearly sinusoidal waveforms; the variability of their pulse amplitudes, shapes, and phases; the correlations in this variability; and the similarity of the accretion- and nuclear-powered pulse shapes and phases in some. It may also explain why accretion-powered millisecond pulsars are difficult to detect, why some are intermittent, and why all detected so far are transients. This model can be tested by comparing with observations the waveform changes it predicts, including the changes with accretion rate.

82 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass and radius of the isolated 205.53 Hz millisecond pulsar PSR J0030+0451 were estimated using a Bayesian inference approach to analyze its energy-dependent thermal X-ray waveform, which was observed using the Neutron Star Interior Composition Explorer (NICER).
Abstract: Neutron stars are not only of astrophysical interest, but are also of great interest to nuclear physicists because their attributes can be used to determine the properties of the dense matter in their cores. One of the most informative approaches for determining the equation of state (EoS) of this dense matter is to measure both a star’s equatorial circumferential radius R e and its gravitational mass M. Here we report estimates of the mass and radius of the isolated 205.53 Hz millisecond pulsar PSR J0030+0451 obtained using a Bayesian inference approach to analyze its energy-dependent thermal X-ray waveform, which was observed using the Neutron Star Interior Composition Explorer (NICER). This approach is thought to be less subject to systematic errors than other approaches for estimating neutron star radii. We explored a variety of emission patterns on the stellar surface. Our best-fit model has three oval, uniform-temperature emitting spots and provides an excellent description of the pulse waveform observed using NICER. The radius and mass estimates given by this model are km and (68%). The independent analysis reported in the companion paper by Riley et al. explores different emitting spot models, but finds spot shapes and locations and estimates of R e and M that are consistent with those found in this work. We show that our measurements of R e and M for PSR J0030+0451 improve the astrophysical constraints on the EoS of cold, catalyzed matter above nuclear saturation density.

758 citations

Journal ArticleDOI
TL;DR: In this article, the mass and radius of the isolated 205.53 Hz millisecond pulsar PSR J0030+0451 were estimated using a Bayesian inference approach to analyze its energy-dependent thermal X-ray waveform.
Abstract: Neutron stars are not only of astrophysical interest, but are also of great interest to nuclear physicists, because their attributes can be used to determine the properties of the dense matter in their cores. One of the most informative approaches for determining the equation of state of this dense matter is to measure both a star's equatorial circumferential radius $R_e$ and its gravitational mass $M$. Here we report estimates of the mass and radius of the isolated 205.53 Hz millisecond pulsar PSR J0030+0451 obtained using a Bayesian inference approach to analyze its energy-dependent thermal X-ray waveform, which was observed using the Neutron Star Interior Composition Explorer (NICER). This approach is thought to be less subject to systematic errors than other approaches for estimating neutron star radii. We explored a variety of emission patterns on the stellar surface. Our best-fit model has three oval, uniform-temperature emitting spots and provides an excellent description of the pulse waveform observed using NICER. The radius and mass estimates given by this model are $R_e = 13.02^{+1.24}_{-1.06}$ km and $M = 1.44^{+0.15}_{-0.14}\ M_\odot$ (68%). The independent analysis reported in the companion paper by Riley et al. (2019) explores different emitting spot models, but finds spot shapes and locations and estimates of $R_e$ and $M$ that are consistent with those found in this work. We show that our measurements of $R_e$ and $M$ for PSR J0030$+$0451 improve the astrophysical constraints on the equation of state of cold, catalyzed matter above nuclear saturation density.

586 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss current mass and spin measurements and their reliability for neutron stars and stellar-mass black holes, as well as the overall importance of spins and masses for compact object astrophysics.

191 citations

Book ChapterDOI
TL;DR: A review of the past fifteen years of AMXPulsar discovery is given in this article, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP.
Abstract: Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.

156 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss current mass and spin measurements and their reliability for neutron stars and stellar-mass black holes, as well as the overall importance of spins and masses for compact object astrophysics.
Abstract: Stellar-mass black holes and neutron stars represent extremes in gravity, density, and magnetic fields. They therefore serve as key objects in the study of multiple frontiers of physics. In addition, their origin (mainly in core-collapse supernovae) and evolution (via accretion or, for neutron stars, magnetic spindown and reconfiguration) touch upon multiple open issues in astrophysics. In this review, we discuss current mass and spin measurements and their reliability for neutron stars and stellar-mass black holes, as well as the overall importance of spins and masses for compact object astrophysics. Current masses are obtained primarily through electromagnetic observations of binaries, although future microlensing observations promise to enhance our understanding substantially. The spins of neutron stars are straightforward to measure for pulsars, but the birth spins of neutron stars are more difficult to determine. In contrast, even the current spins of stellar-mass black holes are challenging to measure. As we discuss, major inroads have been made in black hole spin estimates via analysis of iron lines and continuum emission, with reasonable agreement when both types of estimate are possible for individual objects, and future X-ray polarization measurements may provide additional independent information. We conclude by exploring the exciting prospects for mass and spin measurements from future gravitational wave detections, which are expected to revolutionize our understanding of strong gravity and compact objects.

126 citations