scispace - formally typeset
Search or ask a question
Author

Alexander D. Cronin

Bio: Alexander D. Cronin is an academic researcher from University of Arizona. The author has contributed to research in topics: Atom interferometer & Atom. The author has an hindex of 23, co-authored 100 publications receiving 2869 citations. Previous affiliations of Alexander D. Cronin include Massachusetts Institute of Technology & University of Washington.


Papers
More filters
Journal ArticleDOI
TL;DR: The development of wave optics for light brought many new insights into our understanding of physics, driven by fundamental experiments like the ones by Young, Fizeau, Michelson-Morley and others as mentioned in this paper.
Abstract: The development of wave optics for light brought many new insights into our understanding of physics, driven by fundamental experiments like the ones by Young, Fizeau, Michelson-Morley and others. Quantum mechanics, and especially the de Broglie’s postulate relating the momentum p of a particle to the wave vector k of an matter wave: k = 2 λ = p/ℏ, suggested that wave optical experiments should be also possible with massive particles (see table 1), and over the last 40 years electron and neutron interferometers have demonstrated many fundamental aspects of quantum mechanics [1].

1,194 citations

Journal ArticleDOI
TL;DR: In this article, the authors report a new method to forecast power output from photovoltaic (PV) systems under cloudy skies that uses measurements from ground-based irradiance sensors as an input.

138 citations

Journal ArticleDOI
TL;DR: This work measures the decoherence of a spatially separated atomic superposition due to spontaneous photon scattering, and verifies quantitatively theDecoherence rate constant in the many-photon limit.
Abstract: We measure the decoherence of a spatially separated atomic superposition due to spontaneous photon scattering. We observe a qualitative change in decoherence versus separation as the number of scattered photons increases, and verify quantitatively the decoherence rate constant in the many-photon limit. Our results illustrate an evolution of decoherence consistent with general models developed for a broad class of decoherence phenomena.

99 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the PHVI effect empirically with experiments that spanned three biomes and found that temperatures over a PV plant were regularly 3-4°C warmer than wildlands at night, which is in direct contrast to other studies that suggested that PV systems should decrease ambient temperatures.
Abstract: While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a “heat island” (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3–4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations.

90 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that many of the symptoms of classicality can be induced in quantum systems by their environments, which leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information.
Abstract: as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) of the symptoms of classicality can be induced in quantum systems by their environments. Thus decoherence is caused by the interaction in which the environment in effect monitors certain observables of the system, destroying coherence between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly nonlocal ''Schrodinger-cat states.'' The classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit. Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation. Only the preferred pointer observable of the apparatus can store information that has predictive power. When the measured quantum system is microscopic and isolated, this restriction on the predictive utility of its correlations with the macroscopic apparatus results in the effective ''collapse of the wave packet.'' The existential interpretation implied by einselection regards observers as open quantum systems, distinguished only by their ability to acquire, store, and process information. Spreading of the correlations with the effectively classical pointer states throughout the environment allows one to understand ''classical reality'' as a property based on the relatively objective existence of the einselected states. Effectively classical pointer states can be ''found out'' without being re-prepared, e.g, by intercepting the information already present in the environment. The redundancy of the records of pointer states in the environment (which can be thought of as their ''fitness'' in the Darwinian sense) is a measure of their classicality. A new symmetry appears in this setting. Environment-assisted invariance or envariance sheds new light on the nature of ignorance of the state of the system due to quantum correlations with the environment and leads to Born's rules and to reduced density matrices, ultimately justifying basic principles of the program of decoherence and einselection.

3,499 citations

Journal ArticleDOI
TL;DR: Theoretical and experimental work on radio-frequency (Paul) traps is reviewed in this paper, with a focus on ions trapped in radiofrequency traps, which are ideal for quantum-optical and quantum-dynamical studies under well controlled conditions.
Abstract: Single trapped ions represent elementary quantum systems that are well isolated from the environment. They can be brought nearly to rest by laser cooling, and both their internal electronic states and external motion can be coupled to and manipulated by light fields. This makes them ideally suited for quantum-optical and quantum-dynamical studies under well-controlled conditions. Theoretical and experimental work on these topics is reviewed in the paper, with a focus on ions trapped in radio-frequency (Paul) traps.

2,406 citations

Journal ArticleDOI
TL;DR: In this paper, the degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years have been analyzed, showing a median value of 0·5%/year.
Abstract: As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0·5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology. Copyright © 2011 John Wiley & Sons, Ltd.

1,202 citations