scispace - formally typeset
Search or ask a question
Author

Alexander Fish

Bio: Alexander Fish is an academic researcher from Bar-Ilan University. The author has contributed to research in topics: CMOS & Logic gate. The author has an hindex of 28, co-authored 188 publications receiving 2612 citations. Previous affiliations of Alexander Fish include University of Calgary & Ben-Gurion University of the Negev.


Papers
More filters
Journal ArticleDOI
TL;DR: Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described, showing advantages and drawbacks of GDI compared to other methods.
Abstract: Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Performance comparison with traditional CMOS and various pass-transistor logic design techniques is presented. The different methods are compared with respect to the layout area, number of devices, delay, and power dissipation. Issues like technology compatibility, top-down design, and precomputing synthesis are discussed, showing advantages and drawbacks of GDI compared to other methods. Several logic circuits have been implemented in various design styles. Their properties are discussed, simulation results are reported, and measurements of a test chip are presented.

299 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a set of criteria upon which an effective comparative analysis of the performance of wide-DR (WDR) sensors can be done, based upon the quantitative assessments of the following parameters: signal-to-noise ratio, DR extension, noise floor, minimal transistor count, and sensitivity.
Abstract: A large variety of solutions for widening the dynamic range (DR) of CMOS image sensors has been proposed throughout the years. We propose a set of criteria upon which an effective comparative analysis of the performance of wide-DR (WDR) sensors can be done. Sensors for WDR are divided into seven categories: 1) companding sensors; 2) multimode sensors; 3) clipping sensors; 4) frequency-based sensors; 5) time-to-saturation (time-to-first spike) sensors; 6) global-control-over-the-integration-time sensors; and 7) autonomous-control-over-the-integration-time sensors. The comparative analysis for each category is based upon the quantitative assessments of the following parameters: signal-to-noise ratio, DR extension, noise floor, minimal transistor count, and sensitivity. These parameters are assessed using consistent assumptions and definitions, which are common to all WDR sensor categories. The advantages and disadvantages of each category in the sense of power consumption and data rate are discussed qualitatively. The influence of technology advancements on the proposed set of criteria is discussed as well.

132 citations

Patent
01 Feb 2006
TL;DR: In this paper, the authors propose a complementary logic circuit consisting of a first logic input, a second logic output, a first dedicated logic terminal, an n-type transistor network, and a second dedicated logic block.
Abstract: A complementary logic circuit contains a first logic input, a second logic input, a first dedicated logic terminal, a second dedicated logic terminal, a first logic block, and a second logic block. The first logic block consists of a network of p-type transistors for implementing a predetermined logic function. The p-type transistor network has an outer diffusion connection, a first network gate connection, and an inner diffusion connection. The outer diffusion connection of the p-type transistor network is connected to the first dedicated logic terminal, and the first network gate connection of the p-type transistor network is connected to the first logic input. The second logic block consists of a network of n-type transistors which implements a logic function complementary to the logic function implemented by the first logic block. The n-type transistor network has an outer diffusion connection, a first network gate connection, and an inner diffusion connection. The outer diffusion connection of the n-type transistor network is connected to the second dedicated logic terminal, and the first network gate connection of the n-type transistor network is connected to the second logic input. The inner diffusion connections of the p-type network and of the n-type network are connected together to form a common diffusion logic terminal.

108 citations

Journal ArticleDOI
TL;DR: A novel 9T bitcell is presented, implementing a Supply Feedback concept to internally weaken the pull-up current during write cycles and thus enable low-voltage write operations, achieved without the need for additional peripheral circuits and techniques.
Abstract: Low voltage operation of digital circuits continues to be an attractive option for aggressive power reduction. As standard SRAM bitcells are limited to operation in the strong-inversion regimes due to process variations and local mismatch, the development of specially designed SRAMs for low voltage operation has become popular in recent years. In this paper, we present a novel 9T bitcell, implementing a Supply Feedback concept to internally weaken the pull-up current during write cycles and thus enable low-voltage write operations. As opposed to the majority of existing solutions, this is achieved without the need for additional peripheral circuits and techniques. The proposed bitcell is fully functional under global and local variations at voltages from 250 mV to 1.1 V. In addition, the proposed cell presents a low-leakage state reducing power up to 60%, as compared to an identically supplied 8T bitcell. An 8 kbit SF-SRAM array was implemented and fabricated in a low-power 40 nm process, showing full functionality and ultra-low power.

105 citations

Proceedings ArticleDOI
13 Dec 2010
TL;DR: The modified GDI logic is fully compatible for implementation in a standard CMOS process, and while having the same delay, GDI gates achieve leakage and active power reduction of up to 70% and 50%, respectively.
Abstract: In this paper CMOS compatible Gate Diffusion Input (GDI) design technique is proposed. The GDI method enables the implementation of a wide range of complex logic functions using only two transistors. This method is suitable for the design of low-power logic gates, with a much smaller area than Static CMOS and existing PTL techniques. As opposite to our originally proposed GDI logic, the modified GDI logic is fully compatible for implementation in a standard CMOS process. Simulations of basic GDI gates under process and temperature corners in 40nm CMOS process are shown and compared to similar CMOS gates. We show that while having the same delay, GDI gates achieve leakage and active power reduction of up to 70% and 50%, respectively.

81 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of surface modifications of PDMS, inducing properties such as hydrophilicity, electrical conductivity, anti-fouling, energy harvesting, and energy storage (supercapacitors) are discussed.

375 citations

Journal ArticleDOI
TL;DR: This work uses mechanical translation of a coded aperture for code division multiple access compression of video to discuss the compressed video's temporal resolution and present experimental results for reconstructions of > 10 frames of temporal data per coded snapshot.
Abstract: We use mechanical translation of a coded aperture for code division multiple access compression of video. We discuss the compressed video’s temporal resolution and present experimental results for reconstructions of > 10 frames of temporal data per coded snapshot.

354 citations

Journal ArticleDOI
TL;DR: Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described, showing advantages and drawbacks of GDI compared to other methods.
Abstract: Gate diffusion input (GDI) - a new technique of low-power digital combinatorial circuit design - is described. This technique allows reducing power consumption, propagation delay, and area of digital circuits while maintaining low complexity of logic design. Performance comparison with traditional CMOS and various pass-transistor logic design techniques is presented. The different methods are compared with respect to the layout area, number of devices, delay, and power dissipation. Issues like technology compatibility, top-down design, and precomputing synthesis are discussed, showing advantages and drawbacks of GDI compared to other methods. Several logic circuits have been implemented in various design styles. Their properties are discussed, simulation results are reported, and measurements of a test chip are presented.

299 citations

Patent
25 May 2011
TL;DR: In this article, the authors present a system that has a remote control, equipped with a relative motion sensor that outputs data indicative of a change in position of the wand, which includes the absolute position of a reference point chosen on the wand and the absolute orientation.
Abstract: A system that has a remote control, e.g., a wand, equipped with a relative motion sensor that outputs data indicative of a change in position of the wand. The system also has one or more light sources and a photodetector that detects their light and outputs data indicative of the detected light. The system uses one or more controllers to determine the absolute position of the wand based on the data output by the relative motion sensor and by the photodetector. The data enables determination of the absolute pose of the wand, which includes the absolute position of a reference point chosen on the wand and the absolute orientation of the wand. To properly express the absolute parameters of position and/or orientation of the wand a reference location is chosen with respect to which the calculations are performed. The system is coupled to a display that shows an image defined by a first and second orthogonal axes such as two axes belonging to world coordinates (X o ,Y o ,Z o ). The one or more controllers are configured to generate signals that are a function of the absolute position of the wand in or along a third axis for rendering the display. To simplify the mapping of a real three-dimensional environment in which the wand is operated to the cyberspace of the application that the system is running, the third axis is preferably the third Cartesian coordinate axis of world coordinates (X o ,Y o ,Z o ).

281 citations