scispace - formally typeset
Search or ask a question
Author

Alexander Knuth

Bio: Alexander Knuth is an academic researcher from Qatar Airways. The author has contributed to research in topics: Antigen & Immune system. The author has an hindex of 64, co-authored 286 publications receiving 20135 citations. Previous affiliations of Alexander Knuth include Hamad Medical Corporation & Memorial Sloan Kettering Cancer Center.


Papers
More filters
Journal ArticleDOI
13 Dec 1991-Science
TL;DR: In this paper, a gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line, which belongs to a family of at least three genes.
Abstract: Many human melanoma tumors express antigens that are recognized in vitro by cytolytic T lymphocytes (CTLs) derived from the tumor-bearing patient. A gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line. This gene shows no similarity to known sequences and belongs to a family of at least three genes. It is expressed by the original melanoma cells, other melanoma cell lines, and by some tumor cells of other histological types. No expression was observed in a panel of normal tissues. Antigen MZ2-E appears to be presented by HLA-A1; anti-MZ2-E CTLs of the original patient recognized two melanoma cell lines of other HLA-A1 patients that expressed the gene. Thus, precisely targeted immunotherapy directed against antigen MZ2-E could be provided to individuals identified by HLA typing and analysis of the RNA of a small tumor sample.

3,497 citations

Journal ArticleDOI
TL;DR: To establish a screening system for the humoral response to autoimmunogenic tumor antigens, an enzyme-linked immunosorbent assay (ELISA) was developed using recombinant NY-ESO-1, MAGE-3, SSX2, Melan-A, and tyrosinase proteins.
Abstract: Evidence is growing for both humoral and cellular immune recognition of human tumor antigens. Antibodies with specificity for antigens initially recognized by cytotoxic T lymphocytes (CTLs), e.g., MAGE and tyrosinase, have been detected in melanoma patient sera, and CTLs with specificity for NY-ESO-1, a cancer-testis (CT) antigen initially identified by autologous antibody, have recently been identified. To establish a screening system for the humoral response to autoimmunogenic tumor antigens, an enzyme-linked immunosorbent assay (ELISA) was developed using recombinant NY-ESO-1, MAGE-1, MAGE-3, SSX2, Melan-A, and tyrosinase proteins. A survey of sera from 234 cancer patients showed antibodies to NY-ESO-1 in 19 patients, to MAGE-1 in 3, to MAGE-3 in 2, and to SSX2 in 1 patient. No reactivity to these antigens was found in sera from 70 normal individuals. The frequency of NY-ESO-1 antibody was 9.4% in melanoma patients and 12.5% in ovarian cancer patients. Comparison of tumor NY-ESO-1 phenotype and NY-ESO-1 antibody response in 62 stage IV melanoma patients showed that all patients with NY-ESO-1+ antibody had NY-ESO-1+ tumors, and no patients with NY-ESO-1− tumors had NY-ESO-1 antibody. As the proportion of melanomas expressing NY-ESO-1 is 20–40% and only patients with NY-ESO-1+ tumors have antibody, this would suggest that a high percentage of patients with NY-ESO-1+ tumors develop an antibody response to NY-ESO-1.

742 citations

Journal ArticleDOI
TL;DR: It is shown that antigen-specific humoral and cellular immune responses against human tumor antigens may occur simultaneously in a single patient and a general strategy is provided for identifying the CTL-recognizing peptides of tumor antIGens initially defined by autologous antibody.
Abstract: A growing number of human tumor antigens have been described that can be recognized by cytotoxic T lymphocytes (CTLs) in a major histocompatibility complex (MHC) class I–restricted fashion. Serological screening of cDNA expression libraries, SEREX, has recently been shown to provide another route for defining immunogenic human tumor antigens. The detection of antibody responses against known CTL-defined tumor antigens, e.g., MAGE-1 and tyrosinase, raised the question whether antibody and CTL responses against a defined tumor antigen can occur simultaneously in a single patient. In this paper, we report on a melanoma patient with a high-titer antibody response against the “cancer–testis” antigen NY-ESO-1. Concurrently, a strong MHC class I–restricted CTL reactivity against the autologous NY-ESO-1–positive tumor cell line was found. A stable CTL line (NW38-IVS-1) was established from this patient that reacted with autologous melanoma cells and with allogeneic human histocompatibility leukocyte antigen (HLA)-A2−, NY-ESO-1–positive, but not NY-ESO-1–negative, melanoma cells. Screening of NY-ESO-1 transfectants with NW38-IVS-1 revealed NY-ESO-1 as the relevant CTL target presented by HLA-A2. Computer calculation identified 26 peptides with HLA-A2–binding motifs encoded by NY-ESO-1. Of these, three peptides were efficiently recognized by NW38-IVS-1. Thus, we show that antigen-specific humoral and cellular immune responses against human tumor antigens may occur simultaneously. In addition, our analysis provides a general strategy for identifying the CTL-recognizing peptides of tumor antigens initially defined by autologous antibody.

728 citations

Journal ArticleDOI
TL;DR: It is demonstrated that primary NY-ESO-1-specific CD8+ T-cell responses can be induced by intradermal immunization with NY-Eso-1 peptides, and that immunized patients may have the potential to alter the natural course of NY- ESO- 1-expressing tumors.
Abstract: Cancer–testis antigen NY-ESO-1 is one of the most immunogenic tumor antigens defined to date. Spontaneous humoral and CD8+ T-cell responses to NY-ESO-1 are detected in 40–50% of patients with advanced NY-ESO-1-expressing tumors. A clinical trial was initiated to study the immunological effects of intradermal vaccination with 3 HLA-A2-binding NY-ESO-1 peptides in 12 patients with metastatic NY-ESO-1-expressing cancers. Seven patients were NY-ESO-1 serum antibody negative, and five patients were NY-ESO-1 serum antibody positive at the outset of the study. Primary peptide-specific CD8+ T-cell reactions and delayed-type hypersensitivity responses were generated in four of seven NY-ESO-1 antibody-negative patients. Induction of a specific CD8+ T-cell response to NY-ESO-1 in immunized antibody-negative patients was associated with disease stabilization and objective regression of single metastases. NY-ESO-1 antibody-positive patients did not develop significant changes in baseline NY-ESO-1-specific T-cell reactivity. However, stabilization of disease and regression of individual metastases were observed in three of five immunized patients. These results demonstrate that primary NY-ESO-1-specific CD8+ T-cell responses can be induced by intradermal immunization with NY-ESO-1 peptides, and that immunization with NY-ESO-1 may have the potential to alter the natural course of NY-ESO-1-expressing tumors.

456 citations

Journal ArticleDOI
TL;DR: NY-ESO-1 ELISPOT and tetramer assays with excellent sensitivity, specificity, and reproducibility have been developed and found to correlate with cytotoxicity assays, providing the basis for standardized monitoring of T cell responses in patients receiving NY-ESo-1 vaccines.
Abstract: NY-ESO-1, a member of the cancer–testis family of antigens, is expressed in a subset of a broad range of different human tumor types. Patients with advanced NY-ESO-1-expressing tumors frequently develop humoral immunity to NY-ESO-1, and three HLA A2-restricted peptides were defined previously as targets for cytotoxic CD8+ T cells in a melanoma patient with NY-ESO-1 antibody. The objectives of the present study were (i) to develop enzyme-linked immunospot (ELISPOT) and tetramer assays to measure CD8+ T cell responses to NY-ESO-1, (ii) to determine the frequency of CD8+ T cell responses to NY-ESO-1 in a series of HLA-A2 patients with NY-ESO-1 expressing tumors, (iii) to determine the relation between CD8+ T cell and humoral immune responses to NY-ESO-1, and (iv) to compare results of NY-ESO-1 ELISPOT assays performed independently in two laboratories with T cells from the same patients. NY-ESO-1 ELISPOT and tetramer assays with excellent sensitivity, specificity, and reproducibility have been developed and found to correlate with cytotoxicity assays. CD8+ T cell responses to HLA-A2-restricted NY-ESO-1 peptides were detected in 10 of 11 patients with NY-ESO-1 antibody, but not in patients lacking antibody or in patients with NY-ESO-1-negative tumors. The results of ELISPOT assays were concordant in the two laboratories, providing the basis for standardized monitoring of T cell responses in patients receiving NY-ESO-1 vaccines.

399 citations


Cited by
More filters
Journal ArticleDOI
29 Sep 2006-Science
TL;DR: In situ analysis of tumor-infiltrating immune cells may be a valuable prognostic tool in the treatment of colorectal cancer and possibly other malignancies.
Abstract: The role of the adaptive immune response in controlling the growth and recurrence of human tumors has been controversial. We characterized the tumor-infiltrating immune cells in large cohorts of human colorectal cancers by gene expression profiling and in situ immunohistochemical staining. Collectively, the immunological data (the type, density, and location of immune cells within the tumor samples) were found to be a better predictor of patient survival than the histopathological methods currently used to stage colorectal cancer. The results were validated in two additional patient populations. These data support the hypothesis that the adaptive immune response influences the behavior of human tumors. In situ analysis of tumor-infiltrating immune cells may therefore be a valuable prognostic tool in the treatment of colorectal cancer and possibly other malignancies.

5,536 citations

Journal ArticleDOI
25 Mar 2011-Science
TL;DR: A unifying conceptual framework called “cancer immunoediting,” which integrates the immune system’s dual host-protective and tumor-promoting roles is discussed.
Abstract: Understanding how the immune system affects cancer development and progression has been one of the most challenging questions in immunology. Research over the past two decades has helped explain why the answer to this question has evaded us for so long. We now appreciate that the immune system plays a dual role in cancer: It can not only suppress tumor growth by destroying cancer cells or inhibiting their outgrowth but also promote tumor progression either by selecting for tumor cells that are more fit to survive in an immunocompetent host or by establishing conditions within the tumor microenvironment that facilitate tumor outgrowth. Here, we discuss a unifying conceptual framework called "cancer immunoediting," which integrates the immune system's dual host-protective and tumor-promoting roles.

5,026 citations

Journal ArticleDOI
TL;DR: The photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells as discussed by the authors, which can prolong survival in patients with inoperable cancers and significantly improve quality of life.
Abstract: Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment. CA Cancer J Clin 2011;61:250-281. V C

3,770 citations

Journal ArticleDOI
03 Apr 2015-Science
TL;DR: The way forward for this class of novel agents lies in the ability to understand human immune responses in the tumor microenvironment, which will provide valuable information regarding the dynamic nature of the immune response and regulation of additional pathways that will need to be targeted through combination therapies to provide survival benefit for greater numbers of patients.
Abstract: Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clinical advances and provided a new weapon against cancer. This therapy has elicited durable clinical responses and, in a fraction of patients, long-term remissions where patients exhibit no clinical signs of cancer for many years. The way forward for this class of novel agents lies in our ability to understand human immune responses in the tumor microenvironment. This will provide valuable information regarding the dynamic nature of the immune response and regulation of additional pathways that will need to be targeted through combination therapies to provide survival benefit for greater numbers of patients.

3,499 citations

Journal ArticleDOI
13 Dec 1991-Science
TL;DR: In this paper, a gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line, which belongs to a family of at least three genes.
Abstract: Many human melanoma tumors express antigens that are recognized in vitro by cytolytic T lymphocytes (CTLs) derived from the tumor-bearing patient. A gene was identified that directed the expression of antigen MZ2-E on a human melanoma cell line. This gene shows no similarity to known sequences and belongs to a family of at least three genes. It is expressed by the original melanoma cells, other melanoma cell lines, and by some tumor cells of other histological types. No expression was observed in a panel of normal tissues. Antigen MZ2-E appears to be presented by HLA-A1; anti-MZ2-E CTLs of the original patient recognized two melanoma cell lines of other HLA-A1 patients that expressed the gene. Thus, precisely targeted immunotherapy directed against antigen MZ2-E could be provided to individuals identified by HLA typing and analysis of the RNA of a small tumor sample.

3,497 citations